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1 Scope of the Chapter

This chapter provides routines for the numerical evaluation of definite integrals in one or more
dimensions and for evaluating weights and abscissae of integration rules.

2 Background to the Problems

The routines in this chapter are designed to estimate:

(a) the value of a one-dimensional definite integral of the form
Z b

a

f xð Þ dx ð1Þ

where f xð Þ is defined by you, either at a set of points xi; f xið Þð Þ, for i ¼ 1; 2; . . . ; n, where
a ¼ x1 < x2 < � � � < xn ¼ b, or in the form of a function; and the limits of integration a; b may be
finite or infinite.

Some methods are specially designed for integrands of the form

f xð Þ ¼ w xð Þg xð Þ ð2Þ
which contain a factor w xð Þ, called the weight-function, of a specific form. These methods take full
account of any peculiar behaviour attributable to the w xð Þ factor.

(b) the values of the one-dimensional indefinite integrals arising from (1) where the ranges of
integration are interior to the interval a; b½ �.

(c) the value of a multidimensional definite integral of the formZ
Rn

f x1; x2; . . . ; xnð Þ dxn � � � dx2dx1 ð3Þ

where f x1; x2; . . . ; xnð Þ is a function defined by you and Rn is some region of n-dimensional
space.

The simplest form of Rn is the n-rectangle defined by

ai � xi � bi; i ¼ 1; 2; . . . ; n ð4Þ
where ai and bi are constants. When ai and bi are functions of xj (j < i), the region can easily be
transformed to the rectangular form (see page 266 of Davis and Rabinowitz (1975)). Some of the
methods described incorporate the transformation procedure.

2.1 One-dimensional Integrals

To estimate the value of a one-dimensional integral, a quadrature rule uses an approximation in the
form of a weighted sum of integrand values, i.e.,

Z b

a

f xð Þ dx ’
XN
i¼1

wif xið Þ: ð5Þ

The points xi within the interval a; b½ � are known as the abscissae, and the wi are known as the weights.

More generally, if the integrand has the form (2), the corresponding formula is

Z b

a

w xð Þg xð Þ dx ’
XN
i¼1

wig xið Þ: ð6Þ

If the integrand is known only at a fixed set of points, these points must be used as the abscissae, and
the weighted sum is calculated using finite difference methods. However, if the functional form of the
integrand is known, so that its value at any abscissa is easily obtained, then a wide variety of quadrature
rules are available, each characterised by its choice of abscissae and the corresponding weights.
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The appropriate rule to use will depend on the interval a; b½ � – whether finite or otherwise – and on the
form of any w xð Þ factor in the integrand. A suitable value of N depends on the general behaviour of
f xð Þ; or of g xð Þ, if there is a w xð Þ factor present.

Among possible rules, we mention particularly the Gaussian formulae, which employ a distribution of
abscissae which is optimal for f xð Þ or g xð Þ of polynomial form.

The choice of basic rules constitutes one of the principles on which methods for one-dimensional
integrals may be classified. The other major basis of classification is the implementation strategy, of
which some types are now presented.

(a) Single rule evaluation procedures

A fixed number of abscissae, N , is used. This number and the particular rule chosen uniquely
determine the weights and abscissae. No estimate is made of the accuracy of the result.

(b) Automatic procedures

The number of abscissae, N , within a; b½ � is gradually increased until consistency is achieved to
within a level of accuracy (absolute or relative) you requested. There are essentially two ways of
doing this; hybrid forms of these two methods are also possible:

(i) whole interval procedures (non-adaptive)

A series of rules using increasing values of N are successively applied over the whole interval
a; b½ �. It is clearly more economical if abscissae already used for a lower value of N can be
used again as part of a higher-order formula. This principle is known as optimal extension.
There is no overlap between the abscissae used in Gaussian formulae of different orders.
However, the Kronrod formulae are designed to give an optimal 2N þ 1ð Þ-point formula by
adding N þ 1ð Þ points to an N-point Gauss formula. Further extensions have been developed
by Patterson.

(ii) adaptive procedures

The interval a; b½ � is repeatedly divided into a number of sub-intervals, and integration rules
are applied separately to each sub-interval. Typically, the subdivision process will be carried
further in the neighbourhood of a sharp peak in the integrand than where the curve is smooth.
Thus, the distribution of abscissae is adapted to the shape of the integrand.

Subdivision raises the problem of what constitutes an acceptable accuracy in each sub-interval.
The usual global acceptability criterion demands that the sum of the absolute values of the
error estimates in the sub-intervals should meet the conditions required of the error over the
whole interval. Automatic extrapolation over several levels of subdivision may eliminate the
effects of some types of singularities.

An ideal general-purpose method would be an automatic method which could be used for a wide variety
of integrands, was efficient (i.e., required the use of as few abscissae as possible), and was reliable (i.e.,
always gave results to within the requested accuracy). Complete reliability is unobtainable, and
generally higher reliability is obtained at the expense of efficiency, and vice versa. It must therefore be
emphasized that the automatic routines in this chapter cannot be assumed to be 100% reliable. In
general, however, the reliability is very high.

2.2 Multidimensional Integrals

A distinction must be made between cases of moderately low dimensionality (say, up to 4 or 5
dimensions), and those of higher dimensionality. Where the number of dimensions is limited, a one-
dimensional method may be applied to each dimension, according to some suitable strategy, and high
accuracy may be obtainable (using product rules). However, the number of integrand evaluations rises
very rapidly with the number of dimensions, so that the accuracy obtainable with an acceptable amount
of computational labour is limited; for example a product of 3-point rules in 20 dimensions would
require more than 109 integrand evaluations. Special techniques such as the Monte–Carlo methods can
be used to deal with high dimensions.
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(a) Products of one-dimensional rules

Using a two-dimensional integral as an example, we have

Z b1

a1

Z b2

a2

f x; yð Þ dy dx ’
XN
i¼1

wi

Z b2

a2

f xi; yð Þ dy
� �

ð7Þ

Z b1

a1

Z b2

a2

f x; yð Þ dy dx ’
XN
i¼1

XN
j¼1

wivjf xi; yj
� � ð8Þ

where wi; xið Þ and vi; yið Þ are the weights and abscissae of the rules used in the respective
dimensions.

A different one-dimensional rule may be used for each dimension, as appropriate to the range and
any weight function present, and a different strategy may be used, as appropriate to the integrand
behaviour as a function of each independent variable.

For a rule-evaluation strategy in all dimensions, the formula (8) is applied in a straightforward
manner. For automatic strategies (i.e., attempting to attain a requested accuracy), there is a problem
in deciding what accuracy must be requested in the inner integral(s). Reference to formula (7)
shows that the presence of a limited but random error in the y-integration for different values of xi

can produce a ‘jagged’ function of x, which may be difficult to integrate to the desired accuracy
and for this reason products of automatic one-dimensional routines should be used with caution
(see Lyness (1983)).

(b) Monte–Carlo methods

These are based on estimating the mean value of the integrand sampled at points chosen from an
appropriate statistical distribution function. Usually a variance reducing procedure is incorporated
to combat the fundamentally slow rate of convergence of the rudimentary form of the technique.
These methods can be effective by comparison with alternative methods when the integrand
contains singularities or is erratic in some way, but they are of quite limited accuracy.

(c) Number theoretic methods

These are based on the work of Korobov and Conroy and operate by exploiting implicitly the
properties of the Fourier expansion of the integrand. Special rules, constructed from so-called
optimal coefficients, give a particularly uniform distribution of the points throughout n-dimensional
space and from their number theoretic properties minimize the error on a prescribed class of
integrals. The method can be combined with the Monte–Carlo procedure.

(d) Sag–Szekeres method

By transformation this method seeks to induce properties into the integrand which make it
accurately integrable by the trapezoidal rule. The transformation also allows effective control over
the number of integrand evaluations.

(e) Sparse grid methods

Given a set of one-dimensional quadrature rules of increasing levels of accuracy, the sparse grid
method constructs an approximation to a multidimensional integral using d-dimensional tensor
products of the differences between rules of adjacent levels. This provides a lower theoretical
accuracy than the methods in (a), the full grid approach, which is nonetheless still sufficient for
various classes of sufficiently smooth integrands. Furthermore, it requries substantially fewer
evaluations than the full grid approach. Specifically, if a one-dimensional quadrature rule has
N � O 2‘

� �
points, the full grid will require O 2ld

� �
function evaluations, whereas the sparse grid of

level ‘ will require O 2‘d‘�1
� �

. Hence a sparse grid approach is computationally feasible even for
integrals over d � O 100ð Þ.
Sparse grid methods are deterministic, and may be viewed as automatic whole domain procedures
if their level ‘ is allowed to increase.
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(f) Automatic adaptive procedures

An automatic adaptive strategy in several dimensions normally involves division of the region into
subregions, concentrating the divisions in those parts of the region where the integrand is worst
behaved. It is difficult to arrange with any generality for variable limits in the inner integral(s). For
this reason, some methods use a region where all the limits are constants; this is called a hyper-
rectangle. Integrals over regions defined by variable or infinite limits may be handled by
transformation to a hyper-rectangle. Integrals over regions so irregular that such a transformation is
not feasible may be handled by surrounding the region by an appropriate hyper-rectangle and
defining the integrand to be zero outside the desired region. Such a technique should always be
followed by a Monte–Carlo method for integration.

The method used locally in each subregion produced by the adaptive subdivision process is usually
one of three types: Monte–Carlo, number theoretic or deterministic. Deterministic methods are
usually the most rapidly convergent but are often expensive to use for high dimensionality and not
as robust as the other techniques.

3 Recommendations on Choice and Use of Available Routines

This section is divided into five subsections. The first subsection illustrates the difference between
direct and reverse communication routines. The second subsection highlights the different levels of
vectorization provided by different interfaces.

Sections 3.3, 3.4 and 3.5 consider in turn routines for: one-dimensional integrals over a finite interval,
and over a semi-infinite or an infinite interval; and multidimensional integrals. Within each sub-section,
routines are classified by the type of method, which ranges from simple rule evaluation to automatic
adaptive algorithms. The recommendations apply particularly when the primary objective is simply to
compute the value of one or more integrals, and in these cases the automatic adaptive routines are
generally the most convenient and reliable, although also the most expensive in computing time.

Note however that in some circumstances it may be counter-productive to use an automatic routine. If
the results of the quadrature are to be used in turn as input to a further computation (e.g., an ‘outer’
quadrature or an optimization problem), then this further computation may be adversely affected by the
‘jagged performance profile’ of an automatic routine; a simple rule-evaluation routine may provide
much better overall performance. For further guidance, the article by Lyness (1983) is recommended.

3.1 Direct and Reverse Communication

Routines in this chapter which evaluate an integral value may be classified as either direct
communication or reverse communication. See Section 3.3.3 in How to Use the NAG Library and its
Documentation for a description of these terms.

Currently in this chapter the only routine explicitly using reverse communication is D01RAF.

3.2 Choice of Interface

This section concerns the design of the interface for the provision of abscissae, and the subsequent
collection of calculated information, typically integrand evaluations. Vectorized interfaces typically
allow for more efficient operation.

(a) Single abscissa interfaces

The algorithm will provide a single abscissa at which information is required. These are typically
the most simple to use, although they may be significantly less efficient than a vectorized
equivalent. Most of the algorithms in this chapter are of this type.

Examples of this include D01AJF and D01FBF.

(b) Vectorized abscissae interfaces

The algorithm will return a set of abscissae, at all of which information is required. While these are
more complicated to use, they are typically more efficient than a non-vectorized equivalent. They
reduce the overhead of function calls, allow the avoidance of repetition of computations common
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to each of the integrand evaluations, and offer greater scope for vectorization and parallelization of
your code.

Examples include D01RGF, D01UAF, and the routines D01ATF and D01AUF, which are
vectorized equivalents of D01AJF and D01AKF.

(c) Multiple integral interfaces

These are routines which allow for multiple integrals to be estimated simultaneously. As with (b)
above, these are more complicated to use than single integral routines, however they can provide
higher efficiency, particularly if several integrals require the same subcalculations at the same
abscissae. They are most efficient if integrals which are supplied together are expected to have
similar behaviour over the domain, particularly when the algorithm is adaptive.

Examples include D01EAF and D01RAF.

3.3 One-dimensional Integrals over a Finite Interval

(a) Integrand defined at a set of points

If f xð Þ is defined numerically at four or more points, then the Gill–Miller finite difference method
(D01GAF) should be used. The interval of integration is taken to coincide with the range of x
values of the points supplied. It is in the nature of this problem that any routine may be unreliable.
In order to check results independently and so as to provide an alternative technique you may fit
the integrand by Chebyshev series using E02ADF and then use routine E02AJF to evaluate its
integral (which need not be restricted to the range of the integration points, as is the case for
D01GAF). A further alternative is to fit a cubic spline to the data using E02BAF and then to
evaluate its integral using E02BDF.

(b) Integrand defined as a function

If the functional form of f xð Þ is known, then one of the following approaches should be taken.
They are arranged in the order from most specific to most general, hence the first applicable
procedure in the list will be the most efficient. However, if you do not wish to make any
assumptions about the integrand, the most reliable routines to use will be D01ATF (or
D01AJF), D01AUF (or D01AKF), D01ALF, D01RGF or D01RAF, although these will in
general be less efficient for simple integrals.

(i) Rule-evaluation routines

If f xð Þ is known to be sufficiently well behaved (more precisely, can be closely approximated
by a polynomial of moderate degree), a Gaussian routine with a suitable number of abscissae
may be used.

D01BCF or D01TBF with D01FBF may be used if it is required to examine the weights and
abscissae.

D01TBF is faster and more accurate, whereas D01BCF is more general. D01UAF uses the
same quadrature rules as D01TBF, and may be used if you do not explicitly require the
weights and abscissae.

If f xð Þ is well behaved, apart from a weight-function of the form

x� aþ b

2

����
����
c

or b� xð Þc x� að Þd;

D01BCF with D01FBF may be used.

D01BCF and D01TBF generate weights and abscissae for specific Gauss rules. Weights and
abscissae for other quadrature formulae may be computed using routines D01TDF or D01TEF.
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Wherever possible use D01TDF in preference to D01TEF. The former however requires
information that may not be readily available.

(ii) Automatic whole-interval routines

If f xð Þ is reasonably smooth, and the required accuracy is not too high, the automatic whole
interval routines D01ARF and D01BDF may be used. Additionally, D01ESF with d ¼ 1 may
be used with an appropriate transformation from the unit interval.

D01BDF uses the Gauss 10-point rule, with the 21 point Kronrod extension, and the
subsequent 43 and 87 point Patterson extensions if required.

D01ESF supports multiple simultaneous integrals, and has a vectorized interface. Either high
order Gauss–Patterson rules (of size 2‘ � 1, for ‘ ¼ 1; . . . ; 9), or high order Clenshaw-Curtis
rules (of size 2‘�1 þ 1, for ‘ ¼ 2; . . . ; 12). Gauss–Patterson rules possess greater polynomial
accuracy, whereas Clenshaw–Curtis rules are often well suited to oscillatory integrals.

D01ARF incorporates the same high order Gauss–Patterson rules as D01ESF, and is the only
routine that may be used for indefinite integration.

(iii) Automatic adaptive routines

Firstly, several routines are available for integrands of the form w xð Þg xð Þ where g xð Þ is a
‘smooth’ function (i.e., has no singularities, sharp peaks or violent oscillations in the interval
of integration) and w xð Þ is a weight function of one of the following forms.

1. if w xð Þ ¼ b� xð Þ� x� að Þ� log b� xð Þð Þk log x� að Þð Þl, where k; l ¼ 0 or 1, �; � > �1: use
D01APF;

2. if w xð Þ ¼ 1
x�c : use D01AQF (this integral is called the Hilbert transform of g);

3. if w xð Þ ¼ cos !xð Þ or sin !xð Þ: use D01ANF (this routine can also handle certain types of
singularities in g xð Þ).

Secondly, there are multiple routines for general f xð Þ, using different strategies.

D01ATF (and D01AJF), and D01AUF (and D01AKF) use the strategy of Piessens et al.
(1983), using repeated bisection of the interval, and in the first case the �-algorithm (Wynn
(1956)), to improve the integral estimate. This can cope with singularities away from the end
points, provided singular points do not occur as abscissae, D01AUF tends to perform better
than D01ATF on more oscillatory integrals.

D01ALF uses the same subdivision strategy as D01ATF over a set of initial interval segments
determined by supplied break-points. It is hence suitable for integrals with discontinuities
(including switches in definition) or sharp peaks occuring at known points. Such integrals may
also be approximated using other routines which do not allow break-points, although such
integrals should be evaluated over each of the sub-intervals seperately.

D01RAF again uses the strategy of Piessens et al. (1983), and provides the functionality of
D01ALF, D01ATF and D01AUF in a reverse communication framework. It also supports
multiple integrals and uses a vectorized interface for the abscissae. Hence it is likely to be
more efficient if several similar integrals are required to be evaluated over the same domain.
Furthermore, its behaviour can be tailored through the use of optional parameters.

D01AHF uses the strategy of Patterson (1968) and the �-algorithm to adaptively evaluate the
integral in question. It tends to be more efficient than the bisection based algorithms, although
these tend to be more robust when singularities occur away from the end points.

D01RGF uses another adaptive scheme due to Gonnet (2010). This attempts to match the
quadrature rule to the underlying integrand as well as subdividing the domain. Further, it can
explicitly deal with singular points at abscissae, should NaN's or 1 be returned by the user-
supplied (sub)routine, provided the generation of these does not cause the program to halt (see
Chapter X07).
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3.4 One-dimensional Integrals over a Semi-infinite or Infinite Interval

(a) Integrand defined at a set of points

If f xð Þ is defined numerically at four or more points, and the portion of the integral lying outside
the range of the points supplied may be neglected, then the Gill–Miller finite difference method,
D01GAF, should be used.

(b) Integrand defined as a function

(i) Rule evaluation routines

If f xð Þ behaves approximately like a polynomial in x, apart from a weight function of the
form:

1. e��x; � > 0 (semi-infinite interval, lower limit finite); or

2. e��x; � < 0 (semi-infinite interval, upper limit finite); or

3. e�� x��ð Þ2 ; � > 0 (infinite interval),

or if f xð Þ behaves approximately like a polynomial in xþ bð Þ�1 (semi-infinite range), then the
Gaussian routines may be used.

D01UAF may be used if it is not required to examine the weights and abscissae.

D01BCF or D01TBF with D01FBF may be used if it is required to examine the weights and
abscissae.

D01TBF is faster and more accurate, whereas D01BCF is more general.

D01UBF returns an approximation to the specific problem
Z 1

0
exp �x2

� �
g xð Þ dx.

(ii) Automatic adaptive routines

D01AMF may be used, except for integrands which decay slowly towards an infinite end
point, and oscillate in sign over the entire range. For this class, it may be possible to calculate
the integral by integrating between the zeros and invoking some extrapolation process (see
C06BAF).

D01ASF may be used for integrals involving weight functions of the form cos !xð Þ and
sin !xð Þ over a semi-infinite interval (lower limit finite).

The following alternative procedures are mentioned for completeness, though their use will
rarely be necessary.

1. If the integrand decays rapidly towards an infinite end point, a finite cut-off may be
chosen, and the finite range methods applied.

2. If the only irregularities occur in the finite part (apart from a singularity at the finite limit,
with which D01AMF can cope), the range may be divided, with D01AMF used on the
infinite part.

3. A transformation to finite range may be employed, e.g.,

x ¼ 1� t

t
or x ¼ �loge t

will transform 0;1ð Þ to 1; 0ð Þ while for infinite ranges we haveZ 1

�1
f xð Þ dx ¼

Z 1

0
f xð Þ þ f �xð Þð Þ dx:

If the integrand behaves badly on �1; 0ð Þ and well on 0;1ð Þ or vice versa it is better to

compute it as
Z 0

�1
f xð Þ dxþ

Z 1

0
f xð Þ dx. This saves computing unnecessary function

values in the semi-infinite range where the function is well behaved.
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3.5 Multidimensional Integrals

A number of techniques are available in this area and the choice depends to a large extent on the
dimension and the required accuracy. It can be advantageous to use more than one technique as a
confirmation of accuracy, particularly for high-dimensional integrations. Several routines include a
transformation procedure, using a user-supplied subroutine, which allows general product regions to be
easily dealt with in terms of conversion to the standard n-cube region.

(a) Products of one-dimensional rules (suitable for up to about 5 dimensions)

If f x1; x2; . . . ; xnð Þ is known to be a sufficiently well behaved function of each variable xi, apart
possibly from weight functions of the types provided, a product of Gaussian rules may be used.
These are provided by D01BCF or D01TBF with D01FBF. Rules for finite, semi-infinite and
infinite ranges are included.

For two-dimensional integrals only, unless the integrand is very badly behaved, the automatic
whole-interval product procedure of D01DAF may be used. The limits of the inner integral may be
user-specified functions of the outer variable. Infinite limits may be handled by transformation (see
Section 3.4); end point singularities introduced by transformation should not be troublesome, as the
integrand value will not be required on the boundary of the region.

If none of these routines proves suitable and convenient, the one-dimensional routines may be used
recursively. For example, the two-dimensional integral

I ¼
Z b1

a1

Z b2

a2

f x; yð Þ dy dx

may be expressed as

I ¼
Z b1

a1

F xð Þ dx; where F xð Þ ¼
Z b2

a2

f x; yð Þ dy:

The user-supplied code to evaluate F xð Þ will call the integration routine for the y-integration,
which will call more user-supplied code for f x; yð Þ as a function of y (x being effectively a
constant).

From Mark 24 onwards, all direct communication routines may be called recursively. As such,
you may use any routine, including the same routine, for each dimension. Note however, in
previous releases, direct communication routines were not defined as recursive, and thus a
different library integration routine must be used for each dimension if you are using an
older product. Apart from this restriction, the following combinations were not permitted:
D01AJF and D01ALF, D01ANF and D01APF, D01APF and D01AQF, D01ANF and D01AQF,
D01ANF and D01ASF, D01AMF and D01ASF, D01ATF and D01AUF. Otherwise the full range of
one-dimensional routines are available, for finite/infinite intervals, constant/variable limits, rule
evaluation/automatic strategies etc.

The reverse communication routine D01RAF may be used by itself in a pseudo-recursive manner,
in that it may be called to evaluate an inner integral for the integrand value of an outer integral also
being calculated by D01RAF.

(b) Sag–Szekeres method

Two routines are based on this method.

D01FDF is particularly suitable for integrals of very large dimension although the accuracy is
generally not high. It allows integration over either the general product region (with built-in
transformation to the n-cube) or the n-sphere. Although no error estimate is provided, two
adjustable arguments may be varied for checking purposes or may be used to tune the algorithm to
particular integrals.

D01JAF is also based on the Sag–Szekeres method and integrates over the n-sphere. It uses
improved transformations which may be varied according to the behaviour of the integrand.
Although it can yield very accurate results it can only practically be employed for dimensions not
exceeding 4.
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(c) Number Theoretic method

Two subroutines are based on this method, D01GCF and a vectorized equivalent D01GDF.

Algorithms of this type carry out multidimensional integration using the Korobov–Conroy method
over a product region with built-in transformation to the n-cube. A stochastic modification of this
method is incorporated into the routines in this library, hybridising the technique with the Monte–
Carlo procedure. An error estimate is provided in terms of the statistical standard error. A number
of pre-computed optimal coefficient rules for up to 20 dimensions are provided; others can be
computed using D01GYF and D01GZF. Like the Sag–Szekeres method it is suitable for large
dimensional integrals although the accuracy is not high.

D01GCF requires a function to be provided to evaluate the value of the integrand at a single
abscissa, and a subroutine to return the upper and lower limits of integration in a given dimension.

D01GDF has a vectorized interface which can result in faster execution, especially on vector-
processing machines. You are required to provide two subroutines, the first to return an array of
values of the integrand at each of an array of points, and the second to evaluate the limits of
integration at each of an array of points. This reduces the overhead of function calls, avoids
repetitions of computations common to each of the evaluations of the integral and limits of
integration, and offers greater scope for vectorization of your code.

(d) A combinatorial extrapolation method

D01PAF computes a sequence of approximations and an error estimate to the integral of a function
over a multidimensional simplex using a combinatorial method with extrapolation.

(e) Sparse Grid method

D01ESF implements a sparse grid quadrature scheme for the integration of a vector of
multidimensional integrals over the unit hypercube,

F �
Z

0;1½ �d
f xð Þdx:

The routine uses a vectorized interface, which returns a set of points at which the integrands must
be evaluated in a sparse storage format for efficiency.

Other domains can be readily integrated over by using an appropriate mapping inside the provided
subroutine for evaluating the integrands. It is suitable for d up to O 100ð Þ, although no upper bound
on the number of dimensions is enforced. It will also evaluate one-dimensional integrals, although
in this case the sparse grid used is in fact the full grid.

The routine uses optional parameters, set and queried using the routines D01ZKF and D01ZLF
respectively. Amongst other options, these allow the parallelization of the routine to be controlled.

(f) Automatic routines (D01FCF and D01GBF)

Both routines are for integrals of the form
Z b1

a1

Z b2

a2

� � �
Z bn

an

f x1; x2; . . . ; xnð Þ dxndxn�1 � � � dx1:

D01GBF is an adaptive Monte–Carlo routine. This routine is usually slow and not recommended
for high-accuracy work. It is a robust routine that can often be used for low-accuracy results with
highly irregular integrands or when n is large.

D01FCF is an adaptive deterministic routine. Convergence is fast for well behaved integrands.
Highly accurate results can often be obtained for n between 2 and 5, using significantly fewer
integrand evaluations than would be required by D01GBF. The routine will usually work when the
integrand is mildly singular and for n � 10 should be used before D01GBF. If it is known in
advance that the integrand is highly irregular, it is best to compare results from at least two
different routines.

There are many problems for which one or both of the routines will require large amounts of
computing time to obtain even moderately accurate results. The amount of computing time is
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controlled by the number of integrand evaluations you have allowed, and you should set this
argument carefully, with reference to the time available and the accuracy desired.

D01EAF extends the technique of D01FCF to integrate adaptively more than one integrand, that is
to calculate the set of integrals

Z b1

a1

Z b2

a2

� � �
Z bn

an

f1; f2; . . . ; fmð Þ dxndxn�1 � � � dx1

for a set of similar integrands f1; f2; . . . ; fm where fi ¼ fi x1; x2; . . . ; xnð Þ.
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4 Decision Trees

Tree 1: One-dimensional integrals over a finite interval

Is the functional form of the
integrand known? yes

Is indefinite integration
required? yes

D01ARF

no

Do you require reverse
communication? yes

D01RAF

no

Are you concerned with
efficiency for simple
integrals?

yes

Is the integrand smooth
(polynomial-like) apart from
weight function
x� aþ bð Þ=2j jc or
b� xð Þc x� að Þd?

yes

D01ARF, D01UAF,
D01TBF or D01BCF and
D01FBF, or D01GCF

no

Is the integrand reasonably
smooth and the required
accuracy not too great?

yes
D01ARF, D01BDF, D01ESF

or D01UAF

no

Are multiple integrands to
be integrated
simultaneously?

yes
D01ESF or D01RAF

no

Has the integrand
discontinuities, sharp peaks
or singularities at known
points other than the end
points?

yes

Split the range and begin
again; or use D01ALF or

D01RGF

no

Is the integrand free of
singularities, sharp peaks
and violent oscillations apart
from weight
function b� xð Þ� x� að Þ�
log b� xð Þð Þk log x� að Þð Þl?

yes
D01APF

no

Is the integrand free of
singularities, sharp peaks
and violent oscillations apart
from weight function
x� cð Þ�1?

yes
D01AQF

no

Is the integrand free of
violent oscillations apart
from weight function
cos !xð Þ or sin !xð Þ?

yes
D01ANF

no

Is the integrand free of
singularities? yes

D01AJF, D01AKF, D01AUF
or D01ESF

no

Is the integrand free of
discontinuities and of
singularities except possibly
at the end points?

yes
D01AHF

no

D01AJF, D01ATF, D01RAF
or D01RGF

no

D01AHF, D01AJF, D01ATF,
D01RAF or D01RGF

no

D01GAF
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Note: D01ATF, D01AUF, D01RAF and D01RGF are likely to be more efficient due to their vectorized
interfaces than D01AJF and D01AKF, which use a more conventional user-interface, consistent with
other routines in the chapter.

Tree 2: One-dimensional integrals over a semi-infinite or infinite interval

Is the functional form
of the integrand
known?

yes

Are you concerned
with efficiency for
simple integrands?

yes

Is the integrand
smooth (polynomial-
like) with no
exceptions?

yes

D01UAF, D01BDF,
D01ARF or D01ESF
with transformation.
See Section 3.4 (b)

(ii).

no

Is the integrand of
the formZ 1

0
exp �x2

� �
g xð Þ dx?

yes
D01UBF

no

Is the integrand
smooth (polynomial-
like) apart from
weight function
e�� xð Þ (semi-infinite

range) or e�� x�að Þ2

(infinite range) or is
the integrand
polynomial-like in
1

xþb? (semi-infinite
range)?

yes

D01UAF, or
D01BCF and
D01FBF, or,
D01TBF and
D01FBF, or
D01TDF and
D01FBF

(D01TDF may
require use of

D01TEF)

no

Has integrand
discontinuities, sharp
peaks or singularities
at known points other
than a finite limit?

yes

Split range; begin
again using finite or
infinite range trees

no

Does the integrand
oscillate over the
entire range?

yes

Does the integrand
decay rapidly
towards an infinite
limit?

yes

Use D01AMF; or set
cutoff and use finite

range tree

no

Is the integrand free
of violent oscillations
apart from weight
function cos !xð Þ or
sin !xð Þ (semi-infinite
range)?

yes
D01ASF

no

Use finite-range
integration between

the zeros and
extrapolate (see

C06BAF)

no

D01AMF

no

D01AMF

no

D01GAF (integrates
over the range of the

points supplied)
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Tree 3: Multidimensional integrals

Is dimension ¼ 2 and product region?
yes

D01DAF

no

Is dimension � 4
yes

Is region an n-sphere?
yes

D01FBF with user transformation or
D01JAF

no

Is region a Simplex?
yes

D01FBF with user transformation or
D01PAF

no

Is the integrand smooth (polynomial-
like) in each dimension apart from
weight function?

yes
D01TBF or D01BCF with D01FBF

no

Is integrand free of extremely bad
behaviour? yes

D01ESF, D01FCF, D01FDF or D01GCF

no

Is bad behaviour on the boundary?
yes

D01FCF or D01FDF

no

Compare results from at least two of
D01FCF, D01FDF, D01GBF and

D01GCF, D01ESF and one-dimensional
recursive application

no

Is region an n-sphere?
yes

D01FDF

no

Is region a Simplex?
yes

D01PAF

no

Is high accuracy required?
yes

D01FDF with argument tuning

no

Is dimension high?
yes

D01FDF, D01GCF or D01GDF,
D01ESF

no

D01FCF

Note: in the case where there are many integrals to be evaluated D01EAF should be preferred to
D01FCF.

D01GDF is likely to be more efficient than D01GCF, which uses a more conventional user-interface,
consistent with other routines in the chapter.

5 Functionality Index

Korobov optimal coefficients for use in D01GCF and D01GDF:
when number of points is a product of 2 primes ........................................................... D01GZF
when number of points is prime..................................................................................... D01GYF

Multidimensional quadrature,
over a finite two-dimensional region .............................................................................. D01DAF
over a general product region,

Korobov–Conroy number-theoretic method ............................................................... D01GCF
Sag–Szekeres method (also over n-sphere) ............................................................... D01FDF
variant of D01GCF especially efficient on vector machines...................................... D01GDF

over a hyper-rectangle,
adaptive method ......................................................................................................... D01FCF
adaptive method,

multiple integrands................................................................................................ D01EAF
Gaussian quadrature rule-evaluation........................................................................... D01FBF
Monte–Carlo method ................................................................................................. D01GBF
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sparse grid method (with user transformation),
muliple integrands, vectorized interface ................................................................ D01ESF

over an n-simplex ........................................................................................................... D01PAF
over an n-sphere n � 4ð Þ,

allowing for badly behaved integrands ...................................................................... D01JAF

One-dimensional quadrature,
adaptive integration of a function over a finite interval,

strategy due to Gonnet,
suitable for badly behaved integrals,

vectorized interface .......................................................................................... D01RGF
strategy due to Patterson,

suitable for well-behaved integrands, except possibly at end-points ..................... D01AHF
strategy due to Piessens and de Doncker,

allowing for singularities at user-specified break-points ....................................... D01ALF
suitable for badly behaved integrands,

single abscissa interface ................................................................................... D01AJF
vectorized interface .......................................................................................... D01ATF

suitable for highly oscillatory integrals,
single abscissa interface ................................................................................... D01AKF
vectorized interface .......................................................................................... D01AUF

weight function 1= x� cð Þ Cauchy principal value (Hilbert transform)...................... D01AQF
weight function cos !xð Þ or sin !xð Þ ........................................................................... D01ANF
weight function with end-point singularities of algebraico-logarithmic type.............. D01APF

adaptive integration of a function over an infinite interval or semi-infinite interval,
no weight function ..................................................................................................... D01AMF
weight function cos !xð Þ or sin !xð Þ ........................................................................... D01ASF

integration of a function defined by data values only,
Gill–Miller method .................................................................................................... D01GAF

non-adaptive integration over a finite, semi-infinite or infinite interval,
using pre-computed weights and abscissae

specific integral with weight exp �x2
� �

over semi-infinite interval....................... D01UBF
vectorized interface ............................................................................................... D01UAF

non-adaptive integration over a finite interval ................................................................ D01BDF
non-adaptive integration over a finite interval,

with provision for indefinite integrals also ................................................................ D01ARF
reverse communication,

adaptive integration over a finite interval,
multiple integrands,

efficient on vector machines ............................................................................ D01RAF

Service routines,
array size query for D01RAF ......................................................................................... D01RCF
general option getting ..................................................................................................... D01ZLF
general option setting and initialization .......................................................................... D01ZKF

Weights and abscissae for Gaussian quadrature rules,
method of Golub and Welsch,

calculating the weights and abscissae ........................................................................ D01TDF
generate recursive coefficients.................................................................................... D01TEF

more general choice of rule,
calculating the weights and abscissae ........................................................................ D01BCF

restricted choice of rule,
using pre-computed weights and abscissae ................................................................ D01TBF
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6 Auxiliary Routines Associated with Library Routine Arguments

D01FDV nagf_quad_md_sphere_dummy_region
See the description of the argument REGION in D01FDF.

D01RBM nagf_quad_d01rb_dummy
See the description of the argument MONIT in D01RBF.

7 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 19 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

D01BAF 26 D01UAF
D01BBF 26 D01TBF
D01RBF 27 No replacement required
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