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c05mdf

1 Purpose

c05mdf is a comprehensive reverse communication routine that finds a solution of a system of
nonlinear equations by fixed-point iteration using Anderson acceleration.

2 Specification

Fortran Interface

Subroutine c05mdf (irevcm, n, x, fvec, atol, rtol, m, cndtol, astart,
iwsav, rwsav, ifail)

&

Integer, Intent (In) :: n, m, astart
Integer, Intent (Inout) :: irevcm, iwsav(14+m), ifail
Real (Kind=nag_wp), Intent (In) :: atol, rtol, cndtol
Real (Kind=nag_wp), Intent (Inout) :: x(n), fvec(n),

rwsav(2*m*n+m*m+m+2*n+1+min(m,1)
*max(n,3*m))

&
&

3 Description

The system of equations is defined as:

fk x1; x2; . . . ; xnð Þ ¼ 0; k ¼ 1; 2; . . . ; n:

This homogeneous system can readily be reformulated as

g xð Þ ¼ x; x 2 Rn:

A standard fixed-point iteration approach is to start with an approximate solution x̂0 and repeatedly
apply the function g until possible convergence; i.e., x̂iþ1 ¼ g x̂ið Þ, until x̂iþ1 � x̂ik k < tol. Anderson
acceleration uses up to m previous values of x̂ to obtain an improved estimate x̂iþ1. If a standard fixed-
point iteration converges, then Anderson acceleration usually results in convergence in far fewer
iterations (and therefore using far fewer function evaluations).

Full details of Anderson acceleration are provided in Anderson (1965). In summary, the previous m
iterates are combined to form a succession of least squares problems. These are solved using a QR
decomposition, which is updated at each iteration.

You are free to choose any value for m, provided m � n. A typical choice is m ¼ 4.

4 References

Anderson D G (1965) Iterative Procedures for Nonlinear Integral Equations J. Assoc. Comput. Mach. 12
547–560

5 Arguments

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and
re-entries, and a final exit, as indicated by the argument irevcm. Between intermediate exits and re-
entries, all arguments other than fvec must remain unchanged.

1: irevcm – Integer Input/Output

On initial entry: must have the value 0.
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On intermediate exit: specifies what action you must take before re-entering c05mdf with irevcm
unchanged. The value of irevcm should be interpreted as follows:

irevcm ¼ 1
Indicates the start of a new iteration. No action is required by you, but x and fvec are
available for printing, and a limit on the number of iterations can be applied.

irevcm ¼ 2
Indicates that before re-entry to c05mdf, fvec must contain the function values f x̂ið Þ.

On final exit: irevcm ¼ 0 and the algorithm has terminated.

Constraint: irevcm ¼ 0, 1 or 2.

Note: any values you return to c05mdf as part of the reverse communication procedure should
not include floating-point NaN (Not a Number) or infinity values, since these are not handled by
c05mdf. If your code inadvertently does return any NaNs or infinities, c05mdf is likely to
produce unexpected results.

2: n – Integer Input

On entry: n, the number of equations.

Constraint: n > 0.

3: xðnÞ – Real (Kind=nag_wp) array Input/Output

On initial entry: an initial guess at the solution vector, x̂0.

On intermediate exit: contains the current point.

On final exit: the final estimate of the solution vector.

4: fvecðnÞ – Real (Kind=nag_wp) array Input/Output

On initial entry: need not be set.

On intermediate re-entry: if irevcm ¼ 1, fvec must not be changed.

If irevcm ¼ 2, fvec must be set to the values of the functions computed at the current point x,
f x̂ið Þ.
On final exit: the function values at the final point, x.

5: atol – Real (Kind=nag_wp) Input

On initial entry: the absolute convergence criterion; see below.

Suggested value:
ffiffi
�

p
, where � is the machine precision returned by x02ajf.

Constraint: atol � 0:0.

6: rtol – Real (Kind=nag_wp) Input

On initial entry: the relative convergence criterion. At each iteration f x̂ið Þk k is computed. The
iteration is deemed to have converged if f x̂ið Þk k � max atol; rtol� f x̂0ð Þk kð Þ.
Suggested value:

ffiffi
�

p
, where � is the machine precision returned by x02ajf.

Constraint: rtol � 0:0.

7: m – Integer Input

On initial entry: m, the number of previous iterates to use in Anderson acceleration. If m ¼ 0,
Anderson acceleration is not used.

Suggested value: m ¼ 4.

Constraint: 0 � m � n.
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8: cndtol – Real (Kind=nag_wp) Input

On initial entry: the maximum allowable condition number for the triangular QR factor generated
during Anderson acceleration. At each iteration, if the condition number exceeds cndtol, columns
are deleted until it is sufficiently small.

If cndtol ¼ 0:0, no condition number tests are performed.

Suggested value: cndtol ¼ 0:0. If condition number tests are required, a suggested value is
cndtol ¼ 1:0=

ffiffi
�

p
.

Constraint: cndtol � 0:0.

9: astart – Integer Input

On initial entry: the number of iterations by which to delay the start of Anderson acceleration.

Suggested value: astart ¼ 0.

Constraint: astart � 0.

10: iwsavð14þmÞ – Integer array Communication Array
11: rwsavð2�m� nþm2 þmþ 2� nþ 1þmin m; 1ð Þ �max n; 3�mð ÞÞ

– Real (Kind=nag_wp) array Communication Array

The arrays iwsav and rwsav must not be altered between calls to c05mdf.

The size of rwsav is bounded above by 3� n� mþ 2ð Þ þ 1.

12: ifail – Integer Input/Output

On initial entry: ifail must be set to 0, �1 or 1. If you are unfamiliar with this argument you
should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
arguments may be useful even if ifail 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of ifail on exit.

On final exit: ifail ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry ifail ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by x04aaf).

Errors or warnings detected by the routine:

ifail ¼ 1

On initial entry, irevcm ¼ valueh i.
Constraint: irevcm ¼ 0.

On intermediate entry, irevcm ¼ valueh i.
Constraint: irevcm ¼ 1 or 2.

ifail ¼ 2

On entry, n ¼ valueh i.
Constraint: n > 0.
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ifail ¼ 3

On entry, atol ¼ valueh i.
Constraint: atol � 0:0.

ifail ¼ 4

On entry, rtol ¼ valueh i.
Constraint: rtol � 0:0.

ifail ¼ 5

On entry, m ¼ valueh i and n ¼ valueh i.
Constraint: 0 � m � n.

ifail ¼ 6

On entry, cndtol ¼ valueh i.
Constraint: cndtol � 0:0.

ifail ¼ 7

On entry, astart ¼ valueh i.
Constraint: astart � 0.

ifail ¼ 8

An error occurred in evaluating the QR decomposition during Anderson acceleration. This may
be due to slow convergence of the iteration. Try setting the value of cndtol. If condition number
tests are already performed, try decreasing cndtol.

ifail ¼ 9

The iteration is not making good progress, as measured by the reduction in the norm of f xð Þ in
the last valueh i iterations.

ifail ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

ifail ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

ifail ¼ �999

Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

There are no theoretical guarantees of global or local convergence for Anderson acceleration. However,
extensive numerical tests show that, in practice, Anderson acceleration leads to significant
improvements over the underlying fixed-point methods (which may only converge linearly), and in
some cases can even alleviate divergence.

At each iteration, c05mdf checks whether f x̂ið Þk k � max atol; rtol� f x̂0ð Þk kð Þ. If the inequality is
satisfied, then the iteration is deemed to have converged. The validity of the answer may be checked by
inspecting the value of fvec on final exit from c05mdf.
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8 Parallelism and Performance

c05mdf makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

During each iteration, Anderson acceleration updates the factors of a QR decomposition and uses the
decomposition to solve a linear least squares problem. This involves an additional O mnð Þ floating-point
operations per iteration compared with the unaccelerated fixed-point iteration.

c05mdf does not count the number of iterations. Thus, it is up to you to add a limit on the number of
iterations and check if this limit has been exceeded when c05mdf is called. This is illustrated in the
example program below.

10 Example

This example determines the values x1; . . . ; x4 which satisfy the equations

cos x3 � x1 ¼ 0;ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

4

q
� x2 ¼ 0;

sinx1 � x3 ¼ 0;

x2
2 � x4 ¼ 0:

10.1 Program Text

Program c05mdfe

! C05MDF Example Program Text

! Mark 26.1 Release. NAG Copyright 2017.

! .. Use Statements ..
Use nag_library, Only: c05mdf, dnrm2, nag_wp, x02ajf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: imax = 50, n = 4, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: atol, cndtol, fnorm, rtol
Integer :: astart, i, icount, ifail, irevcm, m

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: fvec(:), rwsav(:), x(:)
Integer, Allocatable :: iwsav(:)

! .. Intrinsic Procedures ..
Intrinsic :: cos, max, min, sin, sqrt

! .. Executable Statements ..

! .. Executable Statements ..
Write (nout,*) ’C05MDF Example Program Results’

m = 2
Allocate (fvec(n),iwsav(14+m),x(n),rwsav(2*m*n+m*m+m+2*n+1+min(m, &

1)*max(n,3*m)))

! The following starting values provide a rough solution.

x(1) = 2.0E0_nag_wp
x(2) = 0.5E0_nag_wp
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x(3) = 2.0E0_nag_wp
x(4) = 0.5E0_nag_wp

atol = sqrt(x02ajf())
rtol = sqrt(x02ajf())
cndtol = 0.0_nag_wp
astart = 0
icount = 0
irevcm = 0
ifail = -1

revcomm: Do

Call c05mdf(irevcm,n,x,fvec,atol,rtol,m,cndtol,astart,iwsav,rwsav, &
ifail)

Select Case (irevcm)
Case (1)

If (icount==imax) Then
Write (nout,*) ’Exiting after the maximum number of iterations’
Exit revcomm

End If

icount = icount + 1

! Insert print statements here to monitor progress if desired.

Cycle revcomm
Case (2)

! Evaluate functions at given point

fvec(1) = cos(x(3)) - x(1)
fvec(2) = sqrt(1.0_nag_wp-x(4)**2) - x(2)
fvec(3) = sin(x(1)) - x(3)
fvec(4) = x(2)**2 - x(4)

Cycle revcomm
Case Default

Exit revcomm
End Select

End Do revcomm

If (ifail==0 .Or. icount==imax) Then
! The NAG name equivalent of dnrm2 is f06ejf

fnorm = dnrm2(n,fvec,1)
Write (nout,*)
Write (nout,99999) ’Final 2-norm of the residuals after’, icount, &

’ iterations is ’, fnorm
Write (nout,*)
Write (nout,*) ’Final approximate solution’
Write (nout,*)
Write (nout,99998)(x(i),i=1,n)

End If

99999 Format (1X,A,I4,A,E12.4)
99998 Format (1X,4F12.4)

End Program c05mdfe

10.2 Program Data

None.
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10.3 Program Results

C05MDF Example Program Results

Final 2-norm of the residuals after 31 iterations is 0.2476E-07

Final approximate solution

0.7682 0.7862 0.6948 0.6180
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