NAG Library Routine Document

g01kqf  (pdf_normal_vector)

 Contents

    1  Purpose
    7  Accuracy

1
Purpose

g01kqf returns a number of values of the probability density function (PDF), or its logarithm, for the Normal (Gaussian) distributions.

2
Specification

Fortran Interface
Subroutine g01kqf ( ilog, lx, x, lxmu, xmu, lxstd, xstd, pdf, ivalid, ifail)
Integer, Intent (In):: ilog, lx, lxmu, lxstd
Integer, Intent (Inout):: ifail
Integer, Intent (Out):: ivalid(*)
Real (Kind=nag_wp), Intent (In):: x(lx), xmu(lxmu), xstd(lxstd)
Real (Kind=nag_wp), Intent (Out):: pdf(*)
C Header Interface
#include nagmk26.h
void  g01kqf_ ( const Integer *ilog, const Integer *lx, const double x[], const Integer *lxmu, const double xmu[], const Integer *lxstd, const double xstd[], double pdf[], Integer ivalid[], Integer *ifail)

3
Description

The Normal distribution with mean μi, variance σi2; has probability density function (PDF)
f xi,μi,σi = 1 σi2π e -xi-μi2/2σi2 ,  σi>0 .  
The input arrays to this routine are designed to allow maximum flexibility in the supply of vector arguments by re-using elements of any arrays that are shorter than the total number of evaluations required. See Section 2.6 in the G01 Chapter Introduction for further information.

4
References

None.

5
Arguments

1:     ilog – IntegerInput
On entry: the value of ilog determines whether the logarithmic value is returned in PDF.
ilog=0
fxi,μi,σi, the probability density function is returned.
ilog=1
logfxi,μi,σi, the logarithm of the probability density function is returned.
Constraint: ilog=0 or 1.
2:     lx – IntegerInput
On entry: the length of the array x.
Constraint: lx>0.
3:     xlx – Real (Kind=nag_wp) arrayInput
On entry: xi, the values at which the PDF is to be evaluated with xi=xj, j=i-1 mod lx+1, for i=1,2,,maxlx,lxstd,lxmu.
4:     lxmu – IntegerInput
On entry: the length of the array xmu.
Constraint: lxmu>0.
5:     xmulxmu – Real (Kind=nag_wp) arrayInput
On entry: μi, the means with μi=xmuj, j=i-1 mod lxmu+1.
6:     lxstd – IntegerInput
On entry: the length of the array xstd.
Constraint: lxstd>0.
7:     xstdlxstd – Real (Kind=nag_wp) arrayInput
On entry: σi, the standard deviations with σi=xstdj, j=i-1 mod lxstd+1.
Constraint: xstdj0.0, for j=1,2,,lxstd.
8:     pdf* – Real (Kind=nag_wp) arrayOutput
Note: the dimension of the array pdf must be at least maxlx,lxstd,lxmu.
On exit: fxi,μi,σi or logfxi,μi,σi.
9:     ivalid* – Integer arrayOutput
Note: the dimension of the array ivalid must be at least maxlx,lxstd,lxmu.
On exit: ivalidi indicates any errors with the input arguments, with
ivalidi=0
No error.
ivalidi=1
σi<0.
10:   ifail – IntegerInput/Output
On entry: ifail must be set to 0, -1​ or ​1. If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1​ or ​1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0. When the value -1​ or ​1 is used it is essential to test the value of ifail on exit.
On exit: ifail=0 unless the routine detects an error or a warning has been flagged (see Section 6).

6
Error Indicators and Warnings

If on entry ifail=0 or -1, explanatory error messages are output on the current error message unit (as defined by x04aaf).
Errors or warnings detected by the routine:
ifail=1
On entry, at least one value of xstd was invalid.
Check ivalid for more information.
ifail=2
On entry, ilog=value.
Constraint: ilog=0 or 1.
ifail=3
On entry, array size=value.
Constraint: lx>0.
ifail=4
On entry, array size=value.
Constraint: lxmu>0.
ifail=5
On entry, array size=value.
Constraint: lxstd>0.
ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
ifail=-399
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
ifail=-999
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7
Accuracy

Not applicable.

8
Parallelism and Performance

g01kqf is not threaded in any implementation.

9
Further Comments

None.

10
Example

This example prints the value of the Normal distribution PDF at four different points xi with differing μi and σi.

10.1
Program Text

Program Text (g01kqfe.f90)

10.2
Program Data

Program Data (g01kqfe.d)

10.3
Program Results

Program Results (g01kqfe.r)

GnuplotProduced by GNUPLOT 4.6 patchlevel 3 0 0.2 0.4 0.6 0.8 1 1.2 1.4 −3 −2 −1 0 1 2 3 y x Example Program Plots of the Gaussian Function (or Normal Distribution). μ=0, σ=0.3 μ=0, σ=1 μ=1, σ=0.6 gnuplot_plot_1 gnuplot_plot_2 gnuplot_plot_3
© The Numerical Algorithms Group Ltd, Oxford, UK. 2017