NAG Library Routine Document

f16glf  (zsum)

 Contents

    1  Purpose
    7  Accuracy

1
Purpose

f16glf (blas_zsum) sums the elements of a complex vector.

2
Specification

Fortran Interface
Function f16glf ( n, x, incx)
Complex (Kind=nag_wp):: f16glf
Integer, Intent (In):: n, incx
Complex (Kind=nag_wp), Intent (In):: x(1+(n-1)*ABS(incx))
C Header Interface
#include nagmk26.h
Complex  f16glf_ ( const Integer *n, const Complex x[], const Integer *incx)
The routine may be called by its BLAST name blas_zsum.

3
Description

f16glf (blas_zsum) returns the sum
x1 + x2 + + xn  
of the elements of an n-element complex vector x, via the function name.
If n0 on entry, f16glf (blas_zsum) returns the value 0+0i.

4
References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee http://www.netlib.org/blas/blast-forum/blas-report.pdf

5
Arguments

1:     n – IntegerInput
On entry: n, the number of elements in x.
2:     x1+n-1×incx – Complex (Kind=nag_wp) arrayInput
On entry: the n-element vector x.
If incx>0, xi must be stored in xi-1×incx+1, for i=1,2,,n.
If incx<0, xi must be stored in xn-i×incx+1, for i=1,2,,n.
Intermediate elements of x are not referenced. If n=0, x is not referenced.
3:     incx – IntegerInput
On entry: the increment in the subscripts of x between successive elements of x.
Constraint: incx0.

6
Error Indicators and Warnings

If incx=0, an error message is printed and program execution is terminated.

7
Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8
Parallelism and Performance

f16glf (blas_zsum) is not threaded in any implementation.

9
Further Comments

None.

10
Example

This example computes the sum of the elements of
x = 1.1+10.2i,11.5-2.7i,9.2T .  

10.1
Program Text

Program Text (f16glfe.f90)

10.2
Program Data

Program Data (f16glfe.d)

10.3
Program Results

Program Results (f16glfe.r)

© The Numerical Algorithms Group Ltd, Oxford, UK. 2017