NAG Library Routine Document

f07apf  (zgesvx)

 Contents

    1  Purpose
    7  Accuracy

1
Purpose

f07apf (zgesvx) uses the LU factorization to compute the solution to a complex system of linear equations
AX=B   or   ATX=B   or   AHX=B ,  
where A is an n by n matrix and X and B are n by r matrices. Error bounds on the solution and a condition estimate are also provided.

2
Specification

Fortran Interface
Subroutine f07apf ( fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info)
Integer, Intent (In):: n, nrhs, lda, ldaf, ldb, ldx
Integer, Intent (Inout):: ipiv(*)
Integer, Intent (Out):: info
Real (Kind=nag_wp), Intent (Inout):: r(*), c(*)
Real (Kind=nag_wp), Intent (Out):: rcond, ferr(nrhs), berr(nrhs), rwork(max(1,2*n))
Complex (Kind=nag_wp), Intent (Inout):: a(lda,*), af(ldaf,*), b(ldb,*), x(ldx,*)
Complex (Kind=nag_wp), Intent (Out):: work(2*n)
Character (1), Intent (In):: fact, trans
Character (1), Intent (Inout):: equed
C Header Interface
#include nagmk26.h
void  f07apf_ ( const char *fact, const char *trans, const Integer *n, const Integer *nrhs, Complex a[], const Integer *lda, Complex af[], const Integer *ldaf, Integer ipiv[], char *equed, double r[], double c[], Complex b[], const Integer *ldb, Complex x[], const Integer *ldx, double *rcond, double ferr[], double berr[], Complex work[], double rwork[], Integer *info, const Charlen length_fact, const Charlen length_trans, const Charlen length_equed)
The routine may be called by its LAPACK name zgesvx.

3
Description

f07apf (zgesvx) performs the following steps:
1. Equilibration
The linear system to be solved may be badly scaled. However, the system can be equilibrated as a first stage by setting fact='E'. In this case, real scaling factors are computed and these factors then determine whether the system is to be equilibrated. Equilibrated forms of the systems AX=B , ATX=B  and AHX=B  are
DR A DC DC-1X = DR B ,  
DR A DC T DR-1 X = DC B ,  
and
DR A DC H DR-1 X = DC B ,  
respectively, where DR  and DC  are diagonal matrices, with positive diagonal elements, formed from the computed scaling factors.
When equilibration is used, A will be overwritten by DR A DC  and B will be overwritten by DR B  (or DC B  when the solution of ATX=B  or AHX=B  is sought).
2. Factorization
The matrix A, or its scaled form, is copied and factored using the LU decomposition
A=PLU ,  
where P is a permutation matrix, L is a unit lower triangular matrix, and U is upper triangular.
This stage can be by-passed when a factored matrix (with scaled matrices and scaling factors) are supplied; for example, as provided by a previous call to f07apf (zgesvx) with the same matrix A.
3. Condition Number Estimation
The LU factorization of A determines whether a solution to the linear system exists. If some diagonal element of U is zero, then U is exactly singular, no solution exists and the routine returns with a failure. Otherwise the factorized form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision then a warning code is returned on final exit.
4. Solution
The (equilibrated) system is solved for X ( DC-1X  or DR-1X ) using the factored form of A ( DRADC ).
5. Iterative Refinement
Iterative refinement is applied to improve the computed solution matrix and to calculate error bounds and backward error estimates for the computed solution.
6. Construct Solution Matrix X
If equilibration was used, the matrix X is premultiplied by DC  (if trans='N') or DR  (if trans='T' or 'C') so that it solves the original system before equilibration.

4
References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore
Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5
Arguments

1:     fact – Character(1)Input
On entry: specifies whether or not the factorized form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factorized.
fact='F'
af and ipiv contain the factorized form of A. If equed'N', the matrix A has been equilibrated with scaling factors given by r and c. a, af and ipiv are not modified.
fact='N'
The matrix A will be copied to af and factorized.
fact='E'
The matrix A will be equilibrated if necessary, then copied to af and factorized.
Constraint: fact='F', 'N' or 'E'.
2:     trans – Character(1)Input
On entry: specifies the form of the system of equations.
trans='N'
AX=B (No transpose).
trans='T'
ATX=B (Transpose).
trans='C'
AHX=B (Conjugate transpose).
Constraint: trans='N', 'T' or 'C'.
3:     n – IntegerInput
On entry: n, the number of linear equations, i.e., the order of the matrix A.
Constraint: n0.
4:     nrhs – IntegerInput
On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.
Constraint: nrhs0.
5:     alda* – Complex (Kind=nag_wp) arrayInput/Output
Note: the second dimension of the array a must be at least max1,n.
On entry: the n by n matrix A.
If fact='F' and equed'N', a must have been equilibrated by the scaling factors in r and/or c.
On exit: if fact='F' or 'N', or if fact='E' and equed='N', a is not modified.
If fact='E' or equed'N', A is scaled as follows:
  • if equed='R', A=DRA;
  • if equed='C', A=ADC;
  • if equed='B', A=DRADC.
6:     lda – IntegerInput
On entry: the first dimension of the array a as declared in the (sub)program from which f07apf (zgesvx) is called.
Constraint: ldamax1,n.
7:     afldaf* – Complex (Kind=nag_wp) arrayInput/Output
Note: the second dimension of the array af must be at least max1,n.
On entry: if fact='F', af contains the factors L and U from the factorization A=PLU as computed by f07arf (zgetrf). If equed'N', af is the factorized form of the equilibrated matrix A.
If fact='N' or 'E', af need not be set.
On exit: if fact='N', af returns the factors L and U from the factorization A=PLU of the original matrix A.
If fact='E', af returns the factors L and U from the factorization A=PLU of the equilibrated matrix A (see the description of a for the form of the equilibrated matrix).
If fact='F', af is unchanged from entry.
8:     ldaf – IntegerInput
On entry: the first dimension of the array af as declared in the (sub)program from which f07apf (zgesvx) is called.
Constraint: ldafmax1,n.
9:     ipiv* – Integer arrayInput/Output
Note: the dimension of the array ipiv must be at least max1,n.
On entry: if fact='F', ipiv contains the pivot indices from the factorization A=PLU as computed by f07arf (zgetrf); at the ith step row i of the matrix was interchanged with row ipivi. ipivi=i indicates a row interchange was not required.
If fact='N' or 'E', ipiv need not be set.
On exit: if fact='N', ipiv contains the pivot indices from the factorization A=PLU of the original matrix A.
If fact='E', ipiv contains the pivot indices from the factorization A=PLU of the equilibrated matrix A.
If fact='F', ipiv is unchanged from entry.
10:   equed – Character(1)Input/Output
On entry: if fact='N' or 'E', equed need not be set.
If fact='F', equed must specify the form of the equilibration that was performed as follows:
  • if equed='N', no equilibration;
  • if equed='R', row equilibration, i.e., A has been premultiplied by DR;
  • if equed='C', column equilibration, i.e., A has been postmultiplied by DC;
  • if equed='B', both row and column equilibration, i.e., A has been replaced by DRADC.
On exit: if fact='F', equed is unchanged from entry.
Otherwise, if no constraints are violated, equed specifies the form of equilibration that was performed as specified above.
Constraint: if fact='F', equed='N', 'R', 'C' or 'B'.
11:   r* – Real (Kind=nag_wp) arrayInput/Output
Note: the dimension of the array r must be at least max1,n.
On entry: if fact='N' or 'E', r need not be set.
If fact='F' and equed='R' or 'B', r must contain the row scale factors for A, DR; each element of r must be positive.
On exit: if fact='F', r is unchanged from entry.
Otherwise, if no constraints are violated and equed='R' or 'B', r contains the row scale factors for A, DR, such that A is multiplied on the left by DR; each element of r is positive.
12:   c* – Real (Kind=nag_wp) arrayInput/Output
Note: the dimension of the array c must be at least max1,n.
On entry: if fact='N' or 'E', c need not be set.
If fact='F' and equed='C' or 'B', c must contain the column scale factors for A, DC; each element of c must be positive.
On exit: if fact='F', c is unchanged from entry.
Otherwise, if no constraints are violated and equed='C' or 'B', c contains the row scale factors for A, DC; each element of c is positive.
13:   bldb* – Complex (Kind=nag_wp) arrayInput/Output
Note: the second dimension of the array b must be at least max1,nrhs.
On entry: the n by r right-hand side matrix B.
On exit: if equed='N', b is not modified.
If trans='N' and equed='R' or 'B', b is overwritten by DRB.
If trans='T' or 'C' and equed='C' or 'B', b is overwritten by DCB.
14:   ldb – IntegerInput
On entry: the first dimension of the array b as declared in the (sub)program from which f07apf (zgesvx) is called.
Constraint: ldbmax1,n.
15:   xldx* – Complex (Kind=nag_wp) arrayOutput
Note: the second dimension of the array x must be at least max1,nrhs.
On exit: if info=0 or n+1, the n by r solution matrix X to the original system of equations. Note that the arrays A and B are modified on exit if equed'N', and the solution to the equilibrated system is DC-1X if trans='N' and equed='C' or 'B', or DR-1X if trans='T' or 'C' and equed='R' or 'B'.
16:   ldx – IntegerInput
On entry: the first dimension of the array x as declared in the (sub)program from which f07apf (zgesvx) is called.
Constraint: ldxmax1,n.
17:   rcond – Real (Kind=nag_wp)Output
On exit: if no constraints are violated, an estimate of the reciprocal condition number of the matrix A (after equilibration if that is performed), computed as rcond=1.0/A1 A-11 .
18:   ferrnrhs – Real (Kind=nag_wp) arrayOutput
On exit: if info=0 or n+1, an estimate of the forward error bound for each computed solution vector, such that x^j-xj/xjferrj where x^j is the jth column of the computed solution returned in the array x and xj is the corresponding column of the exact solution X. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.
19:   berrnrhs – Real (Kind=nag_wp) arrayOutput
On exit: if info=0 or n+1, an estimate of the component-wise relative backward error of each computed solution vector x^j (i.e., the smallest relative change in any element of A or B that makes x^j an exact solution).
20:   work2×n – Complex (Kind=nag_wp) arrayWorkspace
21:   rworkmax1,2×n – Real (Kind=nag_wp) arrayOutput
On exit: rwork1 contains the reciprocal pivot growth factor A/U. The ‘max absolute element’ norm is used. If rwork1 is much less than 1, then the stability of the LU factorization of the (equilibrated) matrix A could be poor. This also means that the solution x, condition estimator rcond, and forward error bound ferr could be unreliable. If factorization fails with info>0andinfon, then rwork1 contains the reciprocal pivot growth factor for the leading info columns of A.
22:   info – IntegerOutput
On exit: info=0 unless the routine detects an error (see Section 6).

6
Error Indicators and Warnings

info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
info>0andinfon
Element value of the diagonal is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed. rcond=0.0 is returned.
info=n+1
U is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

7
Accuracy

For each right-hand side vector b, the computed solution x^ is the exact solution of a perturbed system of equations A+Ex^=b, where
EcnεPLU ,  
cn is a modest linear function of n, and ε is the machine precision. See Section 9.3 of Higham (2002) for further details.
If x is the true solution, then the computed solution x^ satisfies a forward error bound of the form
x-x^ x^ wc condA,x^,b  
where condA,x^,b = A-1 A x^ + b / x^ condA = A-1 A κ A. If x^  is the j th column of X , then wc  is returned in berrj  and a bound on x - x^ / x^  is returned in ferrj . See Section 4.4 of Anderson et al. (1999) for further details.

8
Parallelism and Performance

f07apf (zgesvx) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
f07apf (zgesvx) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9
Further Comments

The factorization of A  requires approximately 83 n3  floating-point operations.
Estimating the forward error involves solving a number of systems of linear equations of the form Ax=b or ATx=b; the number is usually 4 or 5 and never more than 11. Each solution involves approximately 8n2 operations.
In practice the condition number estimator is very reliable, but it can underestimate the true condition number; see Section 15.3 of Higham (2002) for further details.
The real analogue of this routine is f07abf (dgesvx).

10
Example

This example solves the equations
AX=B ,  
where A is the general matrix
A= -1.34+02.55i 0.28+3.17i -6.39-02.20i 0.72-00.92i -1.70-14.10i 33.10-1.50i -1.50+13.40i 12.90+13.80i -3.29-02.39i -1.91+4.42i -0.14-01.35i 1.72+01.35i 2.41+00.39i -0.56+1.47i -0.83-00.69i -1.96+00.67i  
and
B= 26.26+51.78i 31.32-06.70i 64.30-86.80i 158.60-14.20i -5.75+25.31i -2.15+30.19i 1.16+02.57i -2.56+07.55i .  
Error estimates for the solutions, information on scaling, an estimate of the reciprocal of the condition number of the scaled matrix A and an estimate of the reciprocal of the pivot growth factor for the factorization of A are also output.

10.1
Program Text

Program Text (f07apfe.f90)

10.2
Program Data

Program Data (f07apfe.d)

10.3
Program Results

Program Results (f07apfe.r)

© The Numerical Algorithms Group Ltd, Oxford, UK. 2017