! C02AGF Example Program Text
! Mark 26.1 Release. NAG Copyright 2016.
Module c02agfe_mod
! C02AGF Example Program Module:
! Parameters
! .. Implicit None Statement ..
Implicit None
! .. Accessibility Statements ..
Private
! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6
Logical, Parameter, Public :: scal = .True.
End Module c02agfe_mod
Program c02agfe
! C02AGF Example Main Program
! .. Use Statements ..
Use c02agfe_mod, Only: nout
! .. Implicit None Statement ..
Implicit None
! .. Executable Statements ..
Write (nout,*) 'C02AGF Example Program Results'
Call ex1
Call ex2
Contains
Subroutine ex1
! .. Use Statements ..
Use c02agfe_mod, Only: nin, scal
Use nag_library, Only: c02agf, nag_wp
! .. Local Scalars ..
Real (Kind=nag_wp) :: zi, zr
Integer :: i, ifail, n, nroot
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), w(:), z(:,:)
! .. Intrinsic Procedures ..
Intrinsic :: abs
! .. Executable Statements ..
Write (nout,*)
Write (nout,*)
Write (nout,*) 'Example 1'
! Skip heading in data file
Read (nin,*)
Read (nin,*)
Read (nin,*)
Read (nin,*) n
Allocate (a(0:n),w(2*(n+1)),z(2,n))
Read (nin,*)(a(i),i=0,n)
Write (nout,*)
Write (nout,99999) 'Degree of polynomial = ', n
ifail = 0
Call c02agf(a,n,scal,z,w,ifail)
Write (nout,99998) 'Computed roots of polynomial'
nroot = 1
Do While (nroot<=n)
zr = z(1,nroot)
zi = z(2,nroot)
If (zi==0.0E0_nag_wp) Then
Write (nout,99997) 'z = ', zr
nroot = nroot + 1
Else
Write (nout,99997) 'z = ', zr, ' +/- ', abs(zi), '*i'
nroot = nroot + 2
End If
End Do
99999 Format (/,1X,A,I4)
99998 Format (/,1X,A,/)
99997 Format (1X,A,1P,E12.4,A,E12.4,A)
End Subroutine ex1
Subroutine ex2
! .. Use Statements ..
Use c02agfe_mod, Only: nin, scal
Use nag_library, Only: a02abf, c02agf, nag_wp, x02ajf, x02alf
! .. Local Scalars ..
Real (Kind=nag_wp) :: deltac, deltai, di, eps, epsbar, f, &
r1, r2, r3, rmax
Integer :: i, ifail, j, jmin, n
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), abar(:), r(:), w(:), z(:,:), &
zbar(:,:)
Integer, Allocatable :: m(:)
! .. Intrinsic Procedures ..
Intrinsic :: abs, max, min
! .. Executable Statements ..
Write (nout,*)
Write (nout,*)
Write (nout,*) 'Example 2'
! Skip heading in data file
Read (nin,*)
Read (nin,*)
Read (nin,*) n
Allocate (a(0:n),abar(0:n),r(n),w(2*(n+1)),z(2,n),zbar(2,n),m(n))
! Read in the coefficients of the original polynomial.
Read (nin,*)(a(i),i=0,n)
! Compute the roots of the original polynomial.
ifail = 0
Call c02agf(a,n,scal,z,w,ifail)
! Form the coefficients of the perturbed polynomial.
eps = x02ajf()
epsbar = 3.0_nag_wp*eps
Do i = 0, n
If (a(i)/=0.0_nag_wp) Then
f = 1.0_nag_wp + epsbar
epsbar = -epsbar
abar(i) = f*a(i)
Else
abar(i) = 0.0E0_nag_wp
End If
End Do
! Compute the roots of the perturbed polynomial.
ifail = 0
Call c02agf(abar,n,scal,zbar,w,ifail)
! Perform error analysis.
! Initialize markers to 0 (unmarked).
m(1:n) = 0
rmax = x02alf()
! Loop over all unperturbed roots (stored in Z).
Do i = 1, n
deltai = rmax
r1 = a02abf(z(1,i),z(2,i))
! Loop over all perturbed roots (stored in ZBAR).
Do j = 1, n
! Compare the current unperturbed root to all unmarked
! perturbed roots.
If (m(j)==0) Then
r2 = a02abf(zbar(1,j),zbar(2,j))
deltac = abs(r1-r2)
If (deltac<deltai) Then
deltai = deltac
jmin = j
End If
End If
End Do
! Mark the selected perturbed root.
m(jmin) = 1
! Compute the relative error.
If (r1/=0.0E0_nag_wp) Then
r3 = a02abf(zbar(1,jmin),zbar(2,jmin))
di = min(r1,r3)
r(i) = max(deltai/max(di,deltai/rmax),eps)
Else
r(i) = 0.0_nag_wp
End If
End Do
Write (nout,*)
Write (nout,99999) 'Degree of polynomial = ', n
Write (nout,*)
Write (nout,*) 'Computed roots of polynomial ', ' Error estimates'
Write (nout,*) ' ', &
' (machine-dependent)'
Write (nout,*)
Do i = 1, n
Write (nout,99998) 'z = ', z(1,i), z(2,i), '*i', r(i)
End Do
99999 Format (1X,A,I4)
99998 Format (1X,A,1P,E12.4,Sp,E12.4,A,5X,Ss,E9.1)
End Subroutine ex2
End Program c02agfe