F08YKF Example Program Results Matrix A after balancing 1 2 3 4 5 1 1.0000 1.0000 0.1000 0.1000 0.1000 2 2.0000 4.0000 0.8000 1.6000 3.2000 3 0.3000 0.9000 0.2700 0.8100 2.4300 4 0.4000 1.6000 0.6400 2.5600 10.2400 5 0.5000 2.5000 1.2500 6.2500 31.2500 Matrix B after balancing 1 2 3 4 5 1 1.0000 2.0000 0.3000 0.4000 0.5000 2 1.0000 4.0000 0.9000 1.6000 2.5000 3 0.1000 0.8000 0.2700 0.6400 1.2500 4 0.1000 1.6000 0.8100 2.5600 6.2500 5 0.1000 3.2000 2.4300 10.2400 31.2500 Matrix A in Hessenberg form 1 2 3 4 5 1 -2.1898 -0.3181 2.0547 4.7371 -4.6249 2 -0.8395 -0.0426 1.7132 7.5194-17.1850 3 0.0000 -0.2846 -1.0101 -7.5927 26.4499 4 0.0000 0.0000 0.0376 1.4070 -3.3643 5 0.0000 0.0000 0.0000 0.3813 -0.9937 Matrix B in Hessenberg form 1 2 3 4 5 1 -1.4248 -0.3476 2.1175 5.5813 -3.9269 2 0.0000 -0.0782 0.1189 8.0940-15.2928 3 0.0000 0.0000 1.0021-10.9356 26.5971 4 0.0000 0.0000 0.0000 0.5820 -0.0730 5 0.0000 0.0000 0.0000 0.0000 0.5321 Minimal required LWORK = 5 Actual value of LWORK = 30 Generalized eigenvalues 1 ( -2.437, 0.000) 2 ( 0.607, 0.795) 3 ( 0.607, -0.795) 4 ( 1.000, 0.000) 5 ( -0.410, 0.000) Right eigenvectors 1 2 3 4 5 1 -0.3083 0.7026 0.0000 -0.3985 -0.3747 2 0.6622 -0.5582 -0.3678 0.7287 0.7339 3 -0.6244 0.1600 0.1763 -0.5380 -0.5394 4 0.2732 -0.0211 -0.0492 0.1423 0.1720 5 -0.0438 0.0010 0.0072 -0.0199 -0.0192 Left eigenvectors 1 2 3 4 5 1 -0.3747 0.7026 0.0000 -0.3985 0.3083 2 0.7339 -0.5582 -0.3678 0.7287 -0.6622 3 -0.5394 0.1600 0.1763 -0.5380 0.6244 4 0.1720 -0.0211 -0.0492 0.1423 -0.2732 5 -0.0192 0.0010 0.0072 -0.0199 0.0438