F08XSF Example Program Results Matrix A after balancing 1 2 3 4 1 ( 1.0000, 3.0000) ( 1.0000, 4.0000) ( 0.1000, 0.5000) ( 0.1000, 0.6000) 2 ( 2.0000, 2.0000) ( 4.0000, 3.0000) ( 0.8000, 0.4000) ( 1.6000, 0.5000) 3 ( 0.3000, 0.1000) ( 0.9000, 0.2000) ( 0.2700, 0.0300) ( 0.8100, 0.0400) 4 ( 0.4000, 0.0000) ( 1.6000, 0.1000) ( 0.6400, 0.0200) ( 2.5600, 0.0300) Matrix B after balancing 1 2 3 4 1 ( 1.0000, 0.0000) ( 2.0000, 1.0000) ( 0.3000, 0.2000) ( 0.4000, 0.3000) 2 ( 1.0000, 1.0000) ( 4.0000, 2.0000) ( 0.9000, 0.3000) ( 1.6000, 0.4000) 3 ( 0.1000, 0.2000) ( 0.8000, 0.3000) ( 0.2700, 0.0400) ( 0.6400, 0.0500) 4 ( 0.1000, 0.3000) ( 1.6000, 0.4000) ( 0.8100, 0.0500) ( 2.5600, 0.0600) Matrix A in Hessenberg form 1 2 3 4 1 ( -2.868, -1.595) ( -0.809, -0.328) ( -4.900, -0.987) ( -0.048, 1.163) 2 ( -2.672, 0.595) ( -0.790, 0.049) ( -4.955, -0.163) ( -0.439, -0.574) 3 ( 0.000, 0.000) ( -0.098, -0.011) ( -1.168, -0.137) ( -1.756, -0.205) 4 ( 0.000, 0.000) ( 0.000, 0.000) ( 0.087, 0.004) ( 0.032, 0.001) Matrix B is triangular 1 2 3 4 1 ( -1.775, 0.000) ( -0.721, 0.043) ( -5.021, 1.190) ( -0.145, 0.726) 2 ( 0.000, 0.000) ( -0.218, 0.035) ( -2.541, -0.146) ( -0.823, -0.418) 3 ( 0.000, 0.000) ( 0.000, 0.000) ( -1.396, -0.163) ( -1.747, -0.204) 4 ( 0.000, 0.000) ( 0.000, 0.000) ( 0.000, 0.000) ( -0.100, -0.004) Minimal required LWORK = 4 Actual value of LWORK = 24 Generalized eigenvalues 1 ( -0.635, 1.653) 2 ( 0.493, 0.910) 3 ( 0.458, -0.843) 4 ( 0.674, -0.050)