E04RPF Example Program Results SDP problem was read, passing it to the solver. Overview Status: Problem and option settings are editable. No of variables: 5 Objective function: linear Simple bounds: not defined yet Linear constraints: not defined yet Nonlinear constraints: not defined yet Matrix constraints: 2 Matrix constraints IDblk = 1, size = 2 x 2, polynomial of order 2 IDblk = 2, size = 2 x 2, linear E04SV, NLP-SDP Solver (Pennon) ------------------------------ Number of variables 5 [eliminated 0] simple linear nonlin (Standard) inequalities 0 0 0 (Standard) equalities 0 0 Matrix inequalities 1 1 [dense 2, sparse 0] [max dimension 2] Begin of Options Outer Iteration Limit = 100 * d Inner Iteration Limit = 100 * d Infinite Bound Size = 1.00000E+20 * d Initial X = User * d Initial U = Automatic * d Initial P = Automatic * d Hessian Density = Dense * S Init Value P = 1.00000E+00 * d Init Value Pmat = 1.00000E+00 * d Presolve Block Detect = Yes * d Print File = 6 * d Print Level = 2 * d Print Options = Yes * d Monitoring File = -1 * d Monitoring Level = 4 * d Monitor Frequency = 0 * d Stats Time = No * d P Min = 1.05367E-08 * d Pmat Min = 1.05367E-08 * d U Update Restriction = 5.00000E-01 * d Umat Update Restriction = 3.00000E-01 * d Preference = Speed * d Transform Constraints = No * S Dimacs Measures = No * S Stop Criteria = Soft * d Stop Tolerance 1 = 1.00000E-06 * d Stop Tolerance 2 = 1.00000E-07 * d Stop Tolerance Feasibility = 1.00000E-07 * d Linesearch Mode = Goldstein * S Inner Stop Tolerance = 1.00000E-02 * d Inner Stop Criteria = Heuristic * d Task = Minimize * d P Update Speed = 12 * d End of Options -------------------------------------------------------------- it| objective | optim | feas | compl | pen min |inner -------------------------------------------------------------- 0 0.00000E+00 1.82E+01 1.00E+00 4.00E+00 2.00E+00 0 1 4.11823E+00 3.85E-03 0.00E+00 1.73E+00 2.00E+00 6 2 2.58252E+00 5.36E-03 0.00E+00 4.93E-01 9.04E-01 4 3 2.06132E+00 1.02E-03 0.00E+00 7.70E-02 4.08E-01 4 4 2.00050E+00 3.00E-03 8.91E-03 1.78E-02 1.85E-01 3 5 1.99929E+00 1.55E-03 3.16E-03 3.65E-03 8.34E-02 2 6 1.99985E+00 1.03E-04 3.16E-04 7.19E-04 3.77E-02 4 7 1.99997E+00 7.04E-04 5.76E-05 1.41E-04 1.70E-02 1 8 2.00000E+00 1.32E-04 6.52E-06 2.76E-05 7.70E-03 1 9 2.00000E+00 8.49E-06 7.86E-07 5.37E-06 3.48E-03 1 10 2.00000E+00 5.88E-07 1.06E-07 1.04E-06 1.57E-03 1 11 2.00000E+00 5.55E-08 4.87E-08 2.02E-07 7.11E-04 1 12 2.00000E+00 5.34E-09 5.37E-09 3.93E-08 3.21E-04 1 13 2.00000E+00 5.03E-10 5.45E-09 7.62E-09 1.45E-04 1 14 2.00000E+00 4.45E-11 5.55E-09 1.48E-09 6.56E-05 1 -------------------------------------------------------------- it| objective | optim | feas | compl | pen min |inner -------------------------------------------------------------- 15 2.00000E+00 4.36E-12 5.67E-09 2.87E-10 2.96E-05 1 16 2.00000E+00 1.61E-11 5.82E-09 5.57E-11 1.34E-05 1 17 2.00000E+00 3.13E-11 6.00E-09 1.08E-11 6.06E-06 1 18 2.00000E+00 8.65E-11 6.22E-09 2.10E-12 2.74E-06 1 19 2.00000E+00 1.31E-10 6.48E-09 4.07E-13 1.24E-06 1 -------------------------------------------------------------- Status: converged, an optimal solution found -------------------------------------------------------------- Final objective value 2.000000E+00 Relative precision 8.141636E-16 Optimality 1.310533E-10 Feasibility 6.484489E-09 Complementarity 4.066867E-13 Iteration counts Outer iterations 19 Inner iterations 36 Linesearch steps 56 Evaluation counts Augm. Lagr. values 76 Augm. Lagr. gradient 56 Augm. Lagr. hessian 36 --------------------------------------------------------------