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1  Scope of the Chapter

This chapter is concerned with the provision of some commonly occurring physical and mathematical
functions.

2 Background to the Problems

The majority of the routines in this chapter approximate real-valued functions of a single real argument,
and the techniques involved are described in Section 2.1. In addition the chapter contains routines for
elliptic integrals (see Section 2.2), Bessel and Airy functions of a complex argument (see Section 2.3),
complementary error function of a complex argument, hypergeometric functions and various option
pricing routines for use in financial applications.

2.1 Functions of a Single Real Argument

Most of the routines provided for functions of a single real argument have been based on truncated
Chebyshev expansions. This method of approximation was adopted as a compromise between the
conflicting requirements of efficiency and ease of implementation on many different machine ranges. For
details of the reasons behind this choice and the production and testing procedures followed in
constructing this chapter see Schonfelder (1976).

Basically, if the function to be approximated is f(z), then for x € [a,b] an approximation of the form

flx) = g(ﬂf)ZCrTr(t)

is used (3 denotes, according to the usual convention, a summation in which the first term is halved),
where g(z) is some suitable auxiliary function which extracts any singularities, asymptotes and, if
possible, zeros of the function in the range in question and ¢ = ¢(x) is a mapping of the general range
[a,b] to the specific range [—1,+1] required by the Chebyshev polynomials, 7,(¢). For a detailed
description of the properties of the Chebyshev polynomials see Clenshaw (1962) and Fox and Parker
(1968).

The essential property of these polynomials for the purposes of function approximation is that 7),(t)
oscillates between 41 and it takes its extreme values n + 1 times in the interval [—1, +1]. Therefore,
provided the coefficients C, decrease in magnitude sufficiently rapidly the error made by truncating the
Chebyshev expansion after n terms is approximately given by

E(t) ~ C,To(1).

That is, the error oscillates between +C,, and takes its extreme value n + 1 times in the interval in
question. Now this is just the condition that the approximation be a minimax representation, one which
minimizes the maximum error. By suitable choice of the interval, [a, b], the auxiliary function, g(x), and
the mapping of the independent variable, ¢(z), it is almost always possible to obtain a Chebyshev
expansion with rapid convergence and hence truncations that provide near minimax polynomial
approximations to the required function. The difference between the true minimax polynomial and the
truncated Chebyshev expansion is seldom sufficiently great enough to be of significance.

The evaluation of the Chebyshev expansions follows one of two methods. The first and most efficient,
and hence the most commonly used, works with the equivalent simple polynomial. The second method,
which is used on the few occasions when the first method proves to be unstable, is based directly on the
truncated Chebyshev series, and uses backward recursion to evaluate the sum. For the first method, a
suitably truncated Chebyshev expansion (truncation is chosen so that the error is less than the machine
precision) is converted to the equivalent simple polynomial. That is, we evaluate the set of coefficients b,
such that

n—1 n—1

y(t) =Y bt =Y CT(t).
r=0 r=0

The polynomial can then be evaluated by the efficient Horner’s method of nested multiplications,

y(t) = (b() + t(b] + t(bz +... t(bn,2 + tbnfl))) .. )
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This method of evaluation results in efficient routines but for some expansions there is considerable loss
of accuracy due to cancellation effects. In these cases the second method is used. It is well known that if

by = Cn—l
by_o = 2tb,_1 + Cn—2
bj :2tbj+1—bj+2+0j, j=n—-3n—-4,...,0

then

> CT(t) = Y(bo — ba)
r=0

and this is always stable. This method is most efficiently implemented by using three variables cyclically
and explicitly constructing the recursion.

That is,

a = Cn—l
/8 = 2ta+Ch
v = 2t—a+Ch;
a = 2ty=F+Ch4
5 = 2ta— v+ Cn,5

say a = 2ty — B+ C,
B8 = 2ta—vy+C)

yt) = tB—a+1iC

The auxiliary functions used are normally functions compounded of simple polynomial (usually linear)
factors extracting zeros, and the primary compiler-provided functions, sin, cos, In, exp, sqrt, which
extract singularities and/or asymptotes or in some cases basic oscillatory behaviour, leaving a smooth
well-behaved function to be approximated by the Chebyshev expansion which can therefore be rapidly
convergent.

The mappings of [a,b] to [—1,+1] used range from simple linear mappings to the case when b is
infinite, and considerable improvement in convergence can be obtained by use of a bilinear form of
mapping. Another common form of mapping is used when the function is even; that is, it involves only
even powers in its expansion. In this case an approximation over the whole interval [—a,a] can be
provided using a mapping ¢t = 2(z/ a)2 — 1. This embodies the evenness property but the expansion in ¢
involves all powers and hence removes the necessity of working with an expansion with half its
coefficients zero.

For many of the routines an analysis of the error in principle is given, namely, if £ and V are the
absolute errors in function and argument and € and 6 are the corresponding relative errors, then

E =~ |f(a)V
E >~ |zf(z)|

of (@)
i@ |

If we ignore errors that arise in the argument of the function by propagation of data errors, etc., and
consider only those errors that result from the fact that a real number is being represented in the
computer in floating-point form with finite precision, then § is bounded and this bound is independent of
the magnitude of z. For example, on an 11-digit machine

|6 < 1071

(This of course implies that the absolute error V = x¢ is also bounded but the bound is now dependent
on z.) However, because of this the last two relations above are probably of more interest. If possible the
relative error propagation is discussed; that is, the behaviour of the error amplification factor
|zf'(x)/f(x)| is described, but in some cases, such as near zeros of the function which cannot be
extracted explicitly, absolute error in the result is the quantity of significance and here the factor |z f/(x)]
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is described. In general, testing of the functions has shown that their error behaviour follows fairly well
these theoretical error behaviours. In regions where the error amplification factors are less than or of the
order of one, the errors are slightly larger than the above predictions. The errors are here limited largely
by the finite precision of arithmetic in the machine, but € is normally no more than a few times greater
than the bound on 6. In regions where the amplification factors are large, of order ten or greater, the
theoretical analysis gives a good measure of the accuracy obtainable.

It should be noted that the definitions and notations used for the functions in this chapter are all taken
from Abramowitz and Stegun (1972). You are strongly recommended to consult this book for details
before using the routines in this chapter.

2.2 Approximations to Elliptic Integrals

Four functions provided here are symmetrised variants of the classical (Legendre) elliptic integrals.
These alternative definitions have been suggested by Carlson (1965), Carlson (1977b) and Carlson
(1977a) and he also developed the basic algorithms used in this chapter.

The symmetrised elliptic integral of the first kind is represented by

dt
¢t+xt+y@+@

Rp(z,y,2)

where z,y,z > 0 and at most one may be equal to zero.

is chosen so as to make

Rp(z,z,x) = 1//z.

If any two of the variables are equal, Ry degenerates into the second function

Y dt
Ro(z,y) = Rp(x,y,y) = 5/0 Wt—i—_f

The normalization factor, 1 3»

where the argument restrictions are now = > 0 and y # 0.

This function is related to the logarithm or inverse hyperbolic functions if 0 < y < z, and to the inverse
circular functions if 0 < z <.

The symmetrised elliptic integral of the second kind is defined by

p(T,y, 2

/ ¢t+xt+y@+@

with z > 0, x > 0 and y > 0, but only one of  or y may be zero.

The function is a degenerate special case of the symmetrised elliptic integral of the third kind
dt

¢t+xt+w@+@@+m

Ry(x,y,2,p) =

with p # 0 and z,y,z > 0 with at most one equality holding. Thus Rp(z,y,z) = Rj(x,y, 2, 2). The
normalization of both these functions is chosen so that

Rp(z,z,2) = Ry(z,z,z,x) = 1/(:1:\/5)

The algorithms used for all these functions are based on duplication theorems. These allow a recursion
system to be established which constructs a new set of arguments from the old using a combination of
arithmetic and geometric means. The value of the function at the original arguments can then be simply
related to the value at the new arguments. These recursive reductions are used until the arguments differ
from the mean by an amount small enough for a Taylor series about the mean to give sufficient accuracy
when retaining terms of order less than six. Each step of the recurrences reduces the difference from the
mean by a factor of four, and as the truncation error is of order six, the truncation error goes like
(4096) 7", where n is the number of iterations.
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The above forms can be related to the more traditional canonical forms (see Section 17.2 of Abramowitz
and Stegun (1972)), as follows.

If we write ¢ = cos?¢, 7 = 1 —m sin® ¢, s = 1 — n sin” ¢, where 0 < ¢ < Ir, we have

the classical elliptic integral of the first kind:

[ 1
F(¢|m) :/0 (1 —m sin® @) *df = sin¢ Rp(q, 7, 1);

the classical elliptic integral of the second kind:
¢ 1
E(¢ | m) :/ (1 —m sin®6)*do
0

=sin¢ Rp(g,r,1) —imsin’¢ Rp(q, 7, 1)

the classical elliptic integral of the third kind:

1)

II(n;¢ | m) :/0 (1 — n sin® 9)71 (1 —m sin’ 9)7%d9

= Sin¢RF(Qar7 1) +%n Sin3¢RJ(Q7T> 1, 8)'

Also the classical complete elliptic integral of the first kind:

T

K(m) = /07(1 —m sin?6) 7 df = Rp(0,1—m, 1);
the classical complete elliptic integral of the second kind:
E(m) = /0%(1 — msin®0) df = Rp(0,1—m, 1) — bm Rp(0,1 —m, 1).
For convenience, Chapter S contains routines to evaluate classical and symmetrised elliptic integrals.

2.3 Bessel and Airy Functions of a Complex Argument

The routines for Bessel and Airy functions of a real argument are based on Chebyshev expansions, as
described in Section 2.1. The routines provided for functions of a complex argument, however, use
different methods. These routines relate all functions to the modified Bessel functions I, (z) and K,(z)
computed in the right-half complex plane, including their analytic continuations. [, and K, are
computed by different methods according to the values of z and v. The methods include power series,
asymptotic expansions and Wronskian evaluations. The relations between functions are based on well
known formulae (see Abramowitz and Stegun (1972)).

2.4 Option Pricing Routines

The option pricing routines evaluate the closed form solutions or approximations to the equations that
define mathematical models for the prices of selected financial option contracts. These solutions can be
viewed as special functions determined by the underlying equations. The terminology associated with
these routines arises from their setting in financial markets and is briefly outlined below. See Joshi
(2003) for a comprehensive introduction to this subject. An option is a contract which gives the holder
the right, but not the obligation, to buy (if it is a call) or sell (if it is a put) a particular asset, S. A
European option can be exercised only at the specified expiry time, 7', while an American option can be
exercised at any time up to 7. For Asian options the average underlying price over a pre-set time period
determines the payoff.

The asset is bought (if a call) or sold (if a put) at a pre-specified strike price X. Thus, an option contract
has a payoff to the holder of max{(Sr — X),0} for a call or max{(X — Sr),0}, for a put, which
depends on whether the asset price at the time of exercise is above (call) or below (put) the strike, X. If
at any moment in time a contract is currently showing a theoretical profit then it is deemed ‘in-the-
money’; otherwise it is deemed ‘out-of-the-money’.
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The option contract itself therefore has a value and, in many cases, can be traded in markets.

Ma

thematical models (e.g., Black—Scholes, Merton, Vasicek, Hull-White, Heston, CEV, SABR, ...)

give theoretical prices for particular option contracts using a number of assumptions about the behaviour
of financial markets. Typically the price .S; of the underlying asset at time ¢ is modelled as the solution
of a stochastic differential equation (SDE). Depending on the complexity of this equation, the model
may admit closed form formulae for the prices of various options. The options described in this chapter
introduction are detailed below. We let [E denote expectation with respect to the risk neutral measure and

we

S.6

define I4 to be 1 on the set A and 0 otherwise.

The price of a standard European call option is ]E(e"rT max{Sy — X, 0}) and the price of a standard
European put option is E(e™"” max{X — Sr,0}).

For continuously averaged geometric Asian options define

G(T) =exp </0T10g (St)dt).

Then the price of an Asian call option is E(e "’ max{G(T) — X,0}) and the price of an Asian put
option is E(e"" max{X — G(T),0}).

For a binary asset-or-nothing option the price of a call is E(e"TSTH{ST>X}) and the price of a put is
E(G_TTST]I{ST<X}).

For a binary cash-or-nothing option the price of a call is E(e_TTX]I{ST> X}) and the price of a put is
E(€77)TX]I{ST<X}).

For a floating-strike lookback option the price of a call is E(e_7'T(ST — min OSfSTSt)) and the price of
a put is E(e""(max o<i<1S; — S1)).

For an up-and-in barrier option with barrier level H and cash rebate K, set A = {max o<;<7S; > H}.
Then the price of a call is

E(e*"T max{Sy — X,0}I4 + eiTTK(l—HA))
and the price of a put is
E(e " max{X — S7,0}4 + e TK(1 —14))

For a down-and-in barrier option with barrier level H and cash rebate K, set
A = {min<;<7S; < H}. Then the price of a call is

E(e"" max{Sr — X,0}L4 + ¢ T K(1 — L4))
and the price of a put is
E(e™" max {X — S, 0}y + e "TK(1 — 1))

For an up-and-out barrier option with barrier level H and cash rebate K, set
A = {max o<;<7S; > H}. Then the price of a call is

E(e ™ max{Sr — X,0}(1 —L4) +e " KI,)
and the price of a put is
E(e " max{X — S7,0}(1 — L) +e " KI,)

For a down-and-out barrier option with barrier level H and cash rebate K, set
A = {min g<;<7S; < H}. Then the price of a call is

E(e " max{Sr — X,0}(1 — L) +e " KI,)
and the price of a put is

E(e”"" max{X — S7,0}(1 — Ix) + ¢ " Kl4)
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— The price of an American call option is esssup)...rE(e”"" max{S,; — X,0}) and the price of an
American put option is esssup,.,.7E(e”""max{X — S;,0}). Here esssup,.,., denotes the essential
supremum over all stopping times 7 for the process S which take values in _[O, T]. If S is a Markov
process, then the essential supremum may be replaced with the normal supremum. Note that if the
asset S pays no dividends then the price of an American call option is the same as a European call
option.

2.4.1 The Black—Scholes Model

The best known model of asset behaviour is the Black—Scholes model. Under the risk-neutral measure,
the asset is governed by the SDE

as;
S,
where r is the continuously compounded risk-free interest rate, ¢ is the continuously compounded

dividend yield, o is the volatility of log-asset returns (i.e., log (S;+4:/S:)) and W = (VVt)tzo is a standard
Brownian motion. Under this model, the price of any option P must solve the Black—Scholes PDE

oP 0P 1 0°P
— = (r—q)S+= =0 —rP =0
o Tas TS gm T S T
at all times before the option is exercised. This PDE admits a closed form solution for a number of

different options.

(r — q)dt + odW,

2.4.2 The Black—Scholes Model with Term Structure

The simplest extension of the Black—Scholes model is to allow r, ¢ and o to be deterministic functions
of time so that

ds,
?t = (Tt — qt)dt + O'tth.
t

In this case one can still obtain closed form solutions for some options, e.g., European calls and puts.

2.4.3 The Heston Model
Heston (1993) proposed a stochastic volatility model with the following form

ds
B~ g+

t
dvy = kK(p—v)dt+ 0\/1—)?th(2>

where W) and W® are two Brownian motions with quadratic covariation given by
d(WM W@} = pdt. In this model r and ¢ are the continuously compounded risk free interest rate
and dividend rate respectively, v = (uv;),-, is the stochastic volatility process, 7 is the long term mean of
volatility, « is the rate of mean reversion, and o is the volatility of volatility. The prices of European call

and put options in the Heston model are available in closed form up to the evaluation of an integral
transform (see Lewis (2000)).

2.4.4 The Heston Model with Term Structure

The Heston model can be extended by allowing the coefficients to become deterministic functions of
time:

ds,
= = (n—q)di+ yuaw)
t
dv, = Ryl — v)dt + o1 /odW,

where W) and W® are two Brownian motions with quadratic covariation given by
d<W(1>,W(2)> , = prdt. When the coefficients are restricted to being piecewise constant functions of
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time, the prices of European call and put options can be calculated as described in Elices (2008) and
Mikhailov and Noégel (2003).

2.5 Hypergeometric Functions

The confluent hypergeometric function M(a,b,z) (or | F,(a;b;x)) requires a number of techniques to
approximate it over the whole parameter (a, b) space and for all argument (z) values. For x well within
the unit circle |z| < p < 1 (where p = 0.8 say), and for relatively small parameter values, the function
can be well approximated by Taylor expansions, continued fractions or through the solution of the
related ordinary differential equation by an explicit, adaptive integrator. For values of |z| > p, one of
several transformations can be performed (depending on the value of x) to reformulate the problem in
terms of a new argument z’ such that |z/| < p. If one or more of the parameters is relatively large (e.g.,
|a| > 30) then recurrence relations can be used in combination to reformulate the problem in terms of
parameter values of small size (e.g., |a| < 1).

Approximations to the hypergeometric functions can therefore require all of the above techniques in
sequence: a transformation to get an argument well inside the unit circle, a combination of recurrence
relations to reduce the parameter sizes, and the approximation of the resulting hypergeometric function
by one of a set of approximation techniques. Similar complications arise in the computation of the
Gaussian Hypergeometric Function ,F;.

All the techniques described above are based on those described in Pearson (2009).

3 Recommendations on Choice and Use of Available Routines

3.1 Vectorized Routine Variants

Many routines in Chapter S which compute functions of a single real argument have variants which
operate on vectors of arguments. For example, SISAEF computes the value of the I, Bessel function for
a single argument, and S18ASF computes the same function for multiple arguments. In general it should
be more efficient to use vectorized routines where possible, though to some extent this will depend on
the environment from which you call the routines. See Section 4 for a complete list of vectorized
routines.

3.2 Elliptic Integrals

IMPORTANT ADVICE: users who encounter elliptic integrals in the course of their work are strongly
recommended to look at transforming their analysis directly to one of the Carlson forms, rather than to
the traditional canonical Legendre forms. In general, the extra symmetry of the Carlson forms is likely to
simplify the analysis, and these symmetric forms are much more stable to calculate. Note, however, that
this transformation may eventually lead to the following combination of Carlson forms:

1
Rp(0,1 —m,1) — SmRD(O, 1—m,1)

with possibly m — 1, which makes Rr and Rp undefined, although the combination itself remains
defined and — 1. The routine S21BJF returning the Legendre form F(m) through this combination
makes provision for such a case, and allows m = 1.

The routine S21BAF for R is largely included as an auxiliary to the other routines for elliptic integrals.
This integral essentially calculates elementary functions, e.g.,

Inx :(gc—l)Rc((IJFT”)Z,gc)7 x>0

arcsinz = x Ro(l —22,1), |z| < 1;

arcsinhz = x Ro(1 + 2%, 1), etc.

In general this method of calculating these elementary functions is not recommended as there are usually
much more efficient specific routines available in the Library. However, S21BAF may be used, for
example, to compute Inx/(z — 1) when z is close to 1, without the loss of significant figures that occurs
when Inx and x — 1 are computed separately.
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3.3 Bessel and Airy Functions

For computing the Bessel functions J,(z), Y,(z), I,(z) and K,(x) where z is real and v =0 or 1,
special routines are provided, which are much faster than the more general routines that allow a complex
argument and arbitrary real v > 0. Similarly, special routines are provided for computing the Airy
functions and their derivatives Ai(x), Bi(z), Ai'(z), Bi'(x) for a real argument which are much faster
than the routines for complex arguments.

3.4 Option Pricing Functions

For the Black—Scholes model, functions are provided to compute prices and derivatives (Greeks) of all
the European options listed in Section 2.4. Prices for American call and put options can be obtained by
calling S30QCF which uses the Bjerksund and Stensland (2002) approximation to the theoretical value.
For the Black—Scholes model with term structure, prices for European call and put options can be
obtained by calling DO3NDF. The prices of European call and put options in the standard Heston model
can be obtained by calling S30NAF, while S30NCF returns the same prices in the Heston model with
term structure.

3.5 Hypergeometric Functions

Two routines are provided for the confluent hypergeometric function ,F;. Both return values for
1 F(a; b;x) where parameters a and b, and argument x, are all real, but one variant works in a scaled
form designed to avoid unnecessary loss of precision. The unscaled routine S22BAF is easier to use and
should be chosen in the first instance, changing to the scaled routine S22BBF only if problems are
encountered. Similar considerations apply to the Gaussian hypergeometric function routines S22BEF and
S22BFF.

4  Functionality Index

Airy function,
Al, real argument,

o1 | S TS SUOUPPPRPPPPP S17AGF
VECEOTIZEM ..t ee e e e e e e e e e e e e et e e e e et e et e ettt ettt eee e e e bbbttt sseeaaaaaaaaaaaaaaaaasaeeeeeeeeeees S17AUF
Ai or Ai/, complex argument, optionally Scaled .............c.ccoevevvevuiviiiiieiiieeeeeeeeeene S17DGF
Ai’, real argument,
o 1 - | U SO UPRPRRPPP S17AJF
VECLOTIZEM .. ittt et e e e e e e e e e e e e e e e e e eeeeeeaaaans S17AWF
Bi, real argument,
SCALAT ...ttt et e e e e e e e e e ————————————————aaeaaaaaaaaaaaaaaaas S17AHF
VECEOTIZEM ..ttt e e e e e e e e e e e aaaaaaaaaaaaaaaaaaaaaes S17AVF
Bi or Bi’, complex argument, optionally scaled..............c.occoevivieieieiiieiieeeeeeeeeeeeeene S17DHF
Bi, real argument,
SCALAT ...ttt e e e e e e e e e e e e e e e e e e e e e e e e e e ————————————————aeaaaaaaaaaaaaaaaaaaaess S17AKF
VECEOTIZEM ...ttt ee e e e e e e e e e e e e e e e e e e e e et ettt e et ee e bbbttt s s e e e e e aaaaaaaaaaaaaaaaaaeeeeeeeeeees S17AXF
Arccos,
INVETSE CITCULAT COSIME ...uuuuneieeeeee e e et e e e e e e e e e e e e e e e e e e e e e, S09ABF
Arccosh,
INVerse hyperboliC COSINE .....coiuuiiiiiiiiiiiiee ettt e e e e e e e eeeeee e e e S11ACF
Arcsin,
INVETSE CITCULAT SIME L.vvvviiiieeeeeeeeee e e e et e e e e e e e e e e e e e e e e e e e e e e, S09AAF
Arcsinh,
INVErse hYPErDOLIC SINE...ceiiiiiiiiiiiiiiiiiiiie et e e e e e e eeeeee e e e S11ABF
Arctanh,
Inverse hyperbolic tangeNt........ccuuviiiiiiiiieiiiiciiiiiee e e e e e e e e e e e itrraeeeeeeaeeeeeennes S11AAF
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Bessel function,
Iy, real argument,

o7 1 ) TS URP SRR S18AEF
VECTOTIZEM .. eeeeieeeeee ettt ettt e e e e e ettt et e e e e e e e ettt et e e e e eeeeeesnnabbeaaeeeeeas S18ASF

I, real argument,

SCALAT ... ettt e e e e e et e aeeaaraa. S18AFF
VECEOTIZEM ..ot e e e e e e e S18ATF

1, complex argument, optionally scaled ...........ccceeiiiiiiiiiiiiiiiiie e S18DEF

Jo, real argument,

o 1 | PSS USSP S17AEF
A v T0) 4 V4=« BRSSP S17ASF

J1, real argument,

o1 ) TSRS S17AFF
A STe1 101w /< B SUUUR PP S17ATF

Jotn (2), COMPIEX ATGUMENL ....ouiiitieitiieiie ittt ettt ettt et tee e e eeeeenee e S18GKF

Jy,, complex argument, optionally scaled.........ccccceeeeiiriiiiiiieiiiieiiiieees S17DEF

K, real argument,

o1 ) ST RR SRR S18ACF
VECEOTIZEM ..ttt e e e e e e ettt e e e e e e e e aaaaaaaaaaaaaaaaaaaeeaeees S18AQF

K, real argument,

SCALAT ...ttt ettt ettt e e e e e e ettt e e e e e e e ettt eeeeaeeens S18ADF
VECTOTIZEM ..ot e e e e e e e e S18ARF

K, complex argument, optionally scaled............ccceeeiiiiiiiiiiiiiiiiiiiiieee e S18DCF

Yy, real argument,

o1 ) ST RPN S17ACF
VECEOTIZEA ...t e e e e e e e e e e e e e e e e e e e e ettt et ee et ettt s e e e e e e aaaaaaaaaaaaaaaaeeeeeeeeeees S17AQF

Y}, real argument,

SCALAT ...ttt ettt e e e a e e e e e e e e e e e e e e e e S17ADF
VECTOTIZEM .eeveeiieeeeeeeeiiee ettt e e e e ettt e e e e e e e e e ettt et eeaeeeeeeaasnnbabbaeeeaaaeeeeeannnsssaneeaaens S17ARF

Y,, complex argument, optionally scaled............ceeeiiiiiiiiiiiiiiiiiiiiiieeee e S17DCF
beta function,

1816103001 o) (] TSP U PP PPPPPPRN S14CCF
Complement of the Cumulative Normal distribution ............ccceeveieeeeeiiiiiiiiiiiiieeeeeeeeeeiieee S15ACF
Complement of the Error function,

complex argument, SCAlEd .......c.uuuiiiiiiiiiiiiiii e e e e e e S15DDF

TEAL ATGUIMIEIIE L..vviiiiiieeeeeeee e e e e e e e e e e e e e ettt e e bbbt e ettt s s s e e eaaeeaaaaaeaaaaasaaeeeeeeeeeeees SI5ADF

real argument, SCALEd..........oiiiiiiiiiiiiiiiiiiiie e e e e e e as S15AGF
Cosine,

RYPEIDONIC. ..ttt ettt e e e e e e e et e e e e e e e e e e aaaeaaeas S10ACF
COSINEG INEEETAL ....uuiiiiiiiiiiieee ettt e e s e e e aaaaaaaaaaaaaaaaeeees S13ACF
Cumulative Normal distribution fUnction....................cccoiiiiiiiiiceeeee e, S15ABF
DaWSON’S INEEEIAL......uuuiiiiiiiiieeee ittt e e e e ettt e e e e e e e e e stttaeeeeeeeeeeeesasnnsttaareeaaaeaeeeeannes S15AFF
Digamma function, SCAlEd .........ooouiiiiiiiiiiiiei et e e e e e e S14ADF
Elliptic functions, Jacobian, sn, cn, dn,

COMPIEX ATZUIMECIE ...vvviiiiireeeeeeiiiiiiieeeeeeeeeeeeeetiateeeeeeeeeesesaaettaareeeaeeeeeesaassnsssssaaeeaeaseesannnes S21CBF

TEAL ATZUIMEIE «.oieiiieiiiiiiiii e e e e e ettt e e e e e e e et tb et e eeeeeeeeeannaabbareeeaaeeeeeaaannnnsssaeeeeaens S21CAF
Elliptic integral,

general,

Of 2nd Kind, F(2, k', @y D) ceveieiiiiieieiiee et S21DAF

Legendre form,

complete Of 18t Kind, K (172) «oueeeouieiiiiiieiie ettt e S21BHF
complete Of 2nd Kind, E(77) ..eeeuieiieeiieeie ettt S21BJF
OF 18t KINd, F(D[110) cureeiieeie ettt S21BEF
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Of 20d KiNd, E( | 170)ceueiiieeiiiieeet et e S21BFF
Of 31d Kind, TT(705 0 | 170) eeeeeiiii ettt S21BGF
symmetrised,
degenerate of 1St KINd, R0 cooeieooiiiiiiiiiiiiie et e e e e e e e S21BAF
OF 1St KINA, TR coiieeiiiie e e S21BBF
OF 20d KINA, R ieiiiiiiieeiiiie ettt et e et e e et e e ennaeea s S21BCF
OF 3IA KINA, JR 7 eeeiiiieiiiieeeeee et S21BDF
Erf,

TEAL ATZUIMEIE «.eeiiieiiiiiiiie ettt e e e ettt e e e e e e e ettt bttt eeeeeeeea s nnnabbbeeeeeaaeeeeeeaannnnssraeeeeeens S15AEF
Erfc,

complex argument, SCALEA .........ccoeeiiiiiiiiiiiiiii e e e e e S15DDF

TEAL ATZUIMEIIT 1.eeiiiiiiiiiiiiiee et e e e e ettt e e e e e e e e ettta et e eeeeeeeeeaasnstsasseeeeeaaeesaaasnsssssneeeeaaens S15ADF
erfcx,

TEAL ATZUIMEIIE 1oeeeeiiiiiiiiiiee et e e ettt e e e e e ettt e e e e e e e e st b et eeeeeeeeeeeaannnbbeaeeeeeens S15AGF
Exponential,

(4703 1110) 1 S USSP PUPPPRRRN SO1EAF
Exponential INtEEIal ..........cooiiiiiiiiiiiiiiiiiiiie et e e et e e e e e e e e eeaaeeeaaaas SI13AAF
Fresnel integral,

C,

o1 ) TS RP R SU PP S20ADF
A S1E1 101 8 /< B EU TSP S20ARF

S,

071 ) ST TR S20ACF

VECLOTIZEM ...t ettt e e e e e e e e e e e e e e e e S20AQF
GAMMA TUNCHIOMN ....uiiiiiiiiiee e e ettt e e e e e e ettt e e e eeeeeeeeeeetbbaeeeeaaeeeseesannssbaaaaaaaeeeseessnnsnsenes S14AAF
Gamma function,

110T610) 10101 (] (RS UUPUURTPPPPTPPP S14BAF
Generalized factorial fUNCLION..........cooiiiiiiiiiiiiii e S14AAF
Hankel function H(" or H®),

complex argument, optionally Scaled...........ccccuuiiiiiiiiiiiiiiiiiiiiiieeee e S17DLF
Hypergeometric functions,

F(a;b; ), confluent, real argument............cocoeouiiieiiiiinienieicnieiceeese e S22BAF

F(a;b; z), confluent, real argument, scaled form .........c..cocoeviniiiiiniiniiiiniiniiicneene S22BBF

LF (a,b; ¢; ), Gauss, 1eal argUMENT ......cc.couviiiiiiiiieiietenie ettt S22BEF

,F(a,b;c;x), Gauss, real argument, scaled fOrm...........cocooivviniiiiniiniiiiniicicnee S22BFF
Jacobian theta functions 6y(z, q),

TEAL ATGUIMIEIIE L..uviiiiiieeeeeeeee e e e e e e e e e e e e e ettt ee e bbbttt seaeeeaaaeaaaaaasaaaaaaaaeeeeeeeeeees S21CCF
Kelvin function,

beix,

SCALAT ... .eeteeeeee et ettt e e e e e ettt e e e e e e e ettt et et eeeeeeeaanabtbaateaeaeaeee e e nnttbbbareaaaeens S19ABF
VECTOTIZEM ..eeeteieeeeeeeeee ettt e ettt e e e e e e e ettt e e e e e e e e s sttt et e eaeeeeeeeannnnebeeeeeeeas S19APF

ber x,

o7 1 - PSS SURSRRRPP SI9AAF

ST e (0] 8 V45T BT PP PPRRP PP S19ANF
keix,

071 ) TS URPT SRR S19ADF

VECTOTIZEM .. eeteeeeeeeeeee ettt e e ettt e e e e e e e e ettt e e e e e e e e e e senbeteeeeeeens S19ARF

ker z,

o7 1 - | PSS SUPRRRPPPP S19ACF
VECEOTIZEM ..ttt e e e e e e e e e e e e e e e e e e S19AQF
Legendre functions of 1t Kind P (2), P7(Z) verrireeireeiieeeeenieieisenesieieesssieeeesssseseeeneneens S22AAF
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Lo@arithm Of 1 - @ cooeeeeeeee e e e e e e e e e e e e e e e e e e e e e e e e eeeeeeeeeeeessssnnennes SO1BAF
Logarithm of beta function,
1S | BT P PO U PP PP PP PP PPRRRPPPPPIN S14CBF
Logarithm of gamma function,
1o70311] 0] - G USROS S14AGF
1 CST:1 PRSP PPRPPPR S14ABF
TEAL, SCALEM ...eeeiiiei e S14AHF
Option Pricing,
American option, Bjerksund and Stensland option price...........cccceveeeiiieiiiiiiiiiiiiiieeneennn. S30QCF
Asian option, geometric continUOUS aVerage Tate PIiCE ........eeeeeeeeeeeeeeeeeerereeeeeeeeeeereeeeeneeens S30SAF
Asian option, geometric continuous average rate price with Greeks ............cccccvvvvvreeennn.. S30SBF
binary asset-or-nothing OPtiON PIiCE .........eeiieeeeeeiiiiiiiiiiiiiieeeeeeeeeeiirrireeeeeeeeeeeaeneneeraeeeeeeas S30CCF
binary asset-or-nothing option price with Greeks .........ccoceeiiiiiiiiiiiiiiiiiiiieeeeeeee S30CDF
binary cash-0r-nothing OPHON PIICE.........uueiiiiiiieeeiiiiiiiiiiieieeee e e e e e S30CAF
binary cash-or-nothing option price With Greeks.........ccccviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeiieeeeee S30CBF
Black—ScholeS—Merton OPtioN PIiCE..........ieeeeereieeeuurrriiiereeeeeeeaeeiiiirrreeeeeeeessaasnnsrrereeeeaeens S30AAF
Black—Scholes—Merton option price With GIeeks ...........cceeveviiiuiiiiiiiiiieeeeiiiiiiiiieeeeeeenn S30ABF
European option, option prices, using Merton jump-diffusion model...........ccccoouueeeennnne. S30JAF
European option, option price with Greeks, using Merton jump-diffusion model ............ S30JBF
floating-strike 100kback OPtiON PIICE .......eevvvvivriiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeraaenaeee S30BAF
floating-strike lookback option price With Greeks .........ccccevvvieciiiiiiiiiiieeeeiiiiiiiieeeeeeen S30BBF
Heston’s Model OPHION PIICE......uuiiiiieeieieiiiiiiiieeeee e e e e ettt e e e e e e e e e et eeeeaeeeeesenenereaeeeas S30NAF
Heston’s model option price With Greeks.........ccccuvviiiiiiiiieiiiiiiiieeee e S30NBF
Heston’s model with term StIUCLUIE..........ccorriiiiiiiiiiiieeiniiee et e e S30NCF
standard DArrier OPtION PIICE......cceeeiiieeeieeeeeeeeeiieeeieeeeeeeeeiee e s e e e e e e eaaaaaeaaeeens S30FAF
Polygamma function,
WD (L), TRAL oot SI14AEF
P (2), COMPLEX Z ..ottt S14AFF
PST TUNCEION L.ttt e e ettt e s s e e e e aaaaeeaaaaaaaaaaeeeeeeesesessssssssnsssnns S14ACF
psi function derivatives, SCAlEd.........cccuuiiiiiiiiiei e e e e e e S14ADF

Scaled modified Bessel function(s),
e~ Iy(z), real argument,

L7 F: | TS S18CEF
L= 1) 6 VA=« NPT S18CSF

e 111, (z), real argument,

1221 F: ) USSR PPPPR S18CFF
VECLOTIZEM ...ttt ettt e e e e e e e e e e e e e e e e e e e S18CTF

e’ Ko(x), real argument,

o221 F: ) GRS PPPPT S18CCF
VECTOTIZEM ..ttt et e e e e e e e e e e e e e e e e e e e e e e e e e e e e aaaaees S18CQF

e’ K (), real argument,

SCALAT ... o ittt S18CDF
VECLOTIZEM .. ettt ettt et e e e e e e e e e e e e e e e e S18CRF
Sine,

RYPEIDONIC. ..ttt ettt e e e e e e e e et e e e e e e e e e e e nbbbaaaeaaans S10ABF
SINE INLEETAL......eeiiiiiiieee ettt e ettt e e e e e e e ettt et e e e e e e e e e anneeees S13ADF
Tangent,

(o1 (o111 ;1 RPN S07AAF

RYPEIDONIC. .. eetiiieeee ettt e e e e e e et e e e e e e e e e bbaaaeaaeas S10AAF
Trigamma function, SCAlEd ...........uuiiiiiiiiiiiii e e S14ADF
Zeros of Bessel functions J,(x), J/ (x), Yo(x), Y. (2),

SCALAT ... ettt S17ALF
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5  Auxiliary Routines Associated with Library Routine Parameters

None.

6 Routines Withdrawn or Scheduled for Withdrawal

None.
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