NAG Library Routine Document
 S17AQF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

S17AQF returns an array of values of the Bessel function $Y_{0}(x)$.

2 Specification

```
SUBROUTINE SI7AQF (N, X, F, IVALID, IFAIL)
INTEGER N, IVALID(N), IFAIL
REAL (KIND=nag_wp) X(N), F(N)
```


3 Description

S17AQF evaluates an approximation to the Bessel function of the second kind $Y_{0}\left(x_{i}\right)$ for an array of arguments x_{i}, for $i=1,2, \ldots, n$.
Note: $Y_{0}(x)$ is undefined for $x \leq 0$ and the routine will fail for such arguments.
The routine is based on four Chebyshev expansions:
For $0<x \leq 8$,

$$
Y_{0}(x)=\frac{2}{\pi} \ln x \sum_{r=0} a_{r} T_{r}(t)+\sum_{r=0} b_{r} T_{r}(t), \quad \text { with } t=2\left(\frac{x}{8}\right)^{2}-1
$$

For $x>8$,

$$
Y_{0}(x)=\sqrt{\frac{2}{\pi x}}\left\{P_{0}(x) \sin \left(x-\frac{\pi}{4}\right)+Q_{0}(x) \cos \left(x-\frac{\pi}{4}\right)\right\}
$$

where $P_{0}(x)=\sum_{r=0} c_{r} T_{r}(t)$,
and $Q_{0}(x)=\frac{8}{x} \sum_{r=0} d_{r} T_{r}(t)$, with $t=2\left(\frac{8}{x}\right)^{2}-1$.
For x near zero, $Y_{0}(x) \simeq \frac{2}{\pi}\left(\ln \left(\frac{x}{2}\right)+\gamma\right)$, where γ denotes Euler's constant. This approximation is used when x is sufficiently small for the result to be correct to machine precision.
For very large x, it becomes impossible to provide results with any reasonable accuracy (see Section 7), hence the routine fails. Such arguments contain insufficient information to determine the phase of oscillation of $Y_{0}(x)$; only the amplitude, $\sqrt{\frac{2}{\pi n}}$, can be determined and this is returned on softfailure. The range for which this occurs is roughly related to machine precision; the routine will fail if $x \gtrsim 1 /$ machine precision (see the Users' Note for your implementation for details).

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications

Clenshaw C W (1962) Chebyshev Series for Mathematical Functions Mathematical tables HMSO

5 Parameters

1: N - INTEGER Input
On entry: n, the number of points.
Constraint: $\mathrm{N} \geq 0$.
2: $\quad \mathrm{X}(\mathrm{N})$ - REAL (KIND=nag_wp) array
On entry: the argument x_{i} of the function, for $i=1,2, \ldots, \mathrm{~N}$.
Constraint: $\mathrm{X}(i)>0.0$, for $i=1,2, \ldots, \mathrm{~N}$.
3: $\quad \mathrm{F}(\mathrm{N})-$ REAL (KIND=nag_wp) array
Output
On exit: $Y_{0}\left(x_{i}\right)$, the function values.
4: $\quad \operatorname{IVALID}(\mathrm{N})-\operatorname{INTEGER}$ array
Output
On exit: $\operatorname{IVALID}(i)$ contains the error code for x_{i}, for $i=1,2, \ldots, \mathrm{~N}$.
$\operatorname{IVALID}(i)=0$
No error.
$\operatorname{IVALID}(i)=1$
On entry, x_{i} is too large. $\mathrm{F}(i)$ contains the amplitude of the Y_{0} oscillation, $\sqrt{\frac{2}{\pi x_{i}}}$.
$\operatorname{IVALID}(i)=2$
On entry, $x_{i} \leq 0.0, Y_{0}$ is undefined. $\mathrm{F}(i)$ contains 0.0 .
5: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
IFAIL $=1$
On entry, at least one value of X was invalid.
Check IVALID for more information.
IFAIL $=2$
On entry, $\mathrm{N}=\langle$ value \rangle.
Constraint: $\mathrm{N} \geq 0$.

IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

$7 \quad$ Accuracy

Let δ be the relative error in the argument and E be the absolute error in the result. (Since $Y_{0}(x)$ oscillates about zero, absolute error and not relative error is significant, except for very small x.)

If δ is somewhat larger than the machine representation error (e.g., if δ is due to data errors etc.), then E and δ are approximately related by

$$
E \simeq\left|x Y_{1}(x)\right| \delta
$$

(provided E is also within machine bounds). Figure 1 displays the behaviour of the amplification factor $\left|x Y_{1}(x)\right|$.
However, if δ is of the same order as the machine representation errors, then rounding errors could make E slightly larger than the above relation predicts.

For very small x, the errors are essentially independent of δ and the routine should provide relative accuracy bounded by the machine precision.
For very large x, the above relation ceases to apply. In this region, $Y_{0}(x) \simeq \sqrt{\frac{2}{\pi x}} \sin \left(x-\frac{\pi}{4}\right)$. The amplitude $\sqrt{\frac{2}{\pi x}}$ can be calculated with reasonable accuracy for all x, but $\sin \left(x-\frac{\pi}{4}\right)$ cannot. If $x-\frac{\pi}{4}$ is written as $2 N \pi+\theta$ where N is an integer and $0 \leq \theta<2 \pi$, then $\sin \left(x-\frac{\pi}{4}\right)$ is determined by θ only. If $x \gtrsim \delta^{-1}, \theta$ cannot be determined with any accuracy at all. Thus if x is greater than, or of the order of the inverse of machine precision, it is impossible to calculate the phase of $Y_{0}(x)$ and the routine must fail.

Figure 1

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

This example reads values of X from a file, evaluates the function at each value of x_{i} and prints the results.

10.1 Program Text

```
Program sl7aqfe
    S17AQF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Use Statements ..
    Use nag_library, Only: nag_wp, sl7aqf
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
        Integer, Parameter :: nin = 5, nout = 6
        .. Local Scalars ..
        Integer :: i, ifail, n
    .. Local Arrays .
        Real (Kind=nag_wp), Allocatable :: f(:), x(:)
        Integer, Allocatable :: ivalid(:)
! .. Executable Statements ..
        Write (nout,*) 'S17AQF Example Program Results'
        Skip heading in data file
        Read (nin,*)
```

```
Write (nout,*)
Write (nout,*) , X F IVALID'
Write (nout,*)
Read (nin,*) n
Allocate (x(n),f(n),ivalid(n))
Read (nin,*) x(1:n)
ifail = 0
Call sl7aqf(n,x,f,ivalid,ifail)
Do i = 1, n
    Write (nout,99999) x(i), f(i), ivalid(i)
End Do
99999 Format (1X,1P,2E12.3,I5)
End Program sl7aqfe
```


10.2 Program Data

S17AQF Example Program Data
7
0.51 .03 .06 .08 .010 .01000 .0

10.3 Program Results

S17AQF Example Program Results		
X	F	IVALID
5.000E-01	$-4.445 \mathrm{E}-01$	0
$1.000 \mathrm{E}+00$	$8.826 \mathrm{E}-02$	0
$3.000 \mathrm{E}+00$	$3.769 \mathrm{E}-01$	0
$6.000 \mathrm{E}+00$	$-2.882 \mathrm{E}-01$	0
$8.000 \mathrm{E}+00$	$2.235 \mathrm{E}-01$	0
$1.000 \mathrm{E}+01$	$5.567 \mathrm{E}-02$	0
$1.000 \mathrm{E}+03$	$4.716 \mathrm{E}-03$	0

