NAG Library Routine Document
 H05AAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

Given a set of m features and a scoring mechanism for any subset of those features, H05AAF selects the best n subsets of size p using a reverse communication branch and bound algorithm.

2 Specification

```
SUBROUTINE H05AAF (IREVCM, MINCR, M, IP, NBEST, DROP, LZ, Z, LA, A, &
    BSCORE, BZ, MINCNT, GAMMA, ACC, ICOMM, LICOMM, RCOMM, &
    LRCOMM, IFAIL)
INTEGER IREVCM, MINCR, M, IP, NBEST, DROP, LZ, Z(M-IP), LA, &
        A(max (NBEST,M)) , BZ(M-IP,NBEST), MINCNT, (M
        ICOMM(LICOMM), LICOMM, LRCOMM, IFAIL
REAL (KIND=nag_wp) BSCORE (max(NBEST,M)), GAMMA, ACC(2), RCOMM(LRCOMM)
```


3 Description

Given $\Omega=\left\{x_{\mathrm{i}}: i \in \mathbb{Z}, 1 \leq i \leq m\right\}$, a set of m unique features and a scoring mechanism $f(S)$ defined for all $S \subseteq \Omega$ then H05AAF is designed to find $S_{o 1} \subseteq \Omega,\left|S_{o 1}\right|=p$, an optimal subset of size p. Here $\left|S_{o 1}\right|$ denotes the cardinality of $S_{o 1}$, the number of elements in the set.
The definition of the optimal subset depends on the properties of the scoring mechanism, if

$$
\begin{equation*}
f\left(S_{i}\right) \leq f\left(S_{j}\right), \quad \text { for all } S_{j} \subseteq \Omega \text { and } S_{i} \subseteq S_{j} \tag{1}
\end{equation*}
$$

then the optimal subset is defined as one of the solutions to

$$
\underset{S \subseteq \Omega}{\operatorname{maximize}} f(S) \quad \text { subject to } \quad|S|=p
$$

else if

$$
\begin{equation*}
f\left(S_{i}\right) \geq f\left(S_{j}\right), \quad \text { for all } S_{j} \subseteq \Omega \text { and } S_{i} \subseteq S_{j} \tag{2}
\end{equation*}
$$

then the optimal subset is defined as one of the solutions to

$$
\underset{S \subseteq \Omega}{\operatorname{minimize}} f(S) \quad \text { subject to } \quad|S|=p
$$

If neither of these properties hold then H05AAF cannot be used.
As well as returning the optimal subset, $S_{o 1}$, H05AAF can return the best n solutions of size p. If $S_{o i}$ denotes the i th best subset, for $i=1,2, \ldots, n-1$, then the $(i+1)$ th best subset is defined as the solution to either

$$
\underset{S \subseteq \Omega-\left\{S_{o j}: j \in \mathbb{Z}, 1 \leq j \leq i\right\}}{\operatorname{maximize}} f(S) \quad \text { subject to } \quad|S|=p
$$

or

$$
\underset{S \subseteq \Omega-\left\{S_{o j}: j \in \mathbb{Z}, 1 \leq j \leq i\right\}}{\operatorname{minimize}} f(S) \quad \text { subject to } \quad|S|=p
$$

depending on the properties of f.
The solutions are found using a branch and bound method, where each node of the tree is a subset of Ω. Assuming that (1) holds then a particular node, defined by subset S_{i}, can be trimmed from the tree if $f\left(S_{i}\right)<\hat{f}\left(S_{o n}\right)$ where $\hat{f}\left(S_{o n}\right)$ is the nth highest score we have observed so far for a subset of size p,
i.e., our current best guess of the score for the nth best subset. In addition, because of (1) we can also drop all nodes defined by any subset S_{j} where $S_{j} \subseteq S_{i}$, thus avoiding the need to enumerate the whole tree. Similar short cuts can be taken if (2) holds. A full description of this branch and bound algorithm can be found in Ridout (1988).
Rather than calculate the score at a given node of the tree H05AAF utilizes the fast branch and bound algorithm of Somol et al. (2004), and attempts to estimate the score where possible. For each feature, x_{i}, two values are stored, a count c_{i} and $\hat{\mu}_{i}$, an estimate of the contribution of that feature. An initial value of zero is used for both c_{i} and $\hat{\mu}_{i}$. At any stage of the algorithm where both $f(S)$ and $f\left(S-\left\{x_{i}\right\}\right)$ have been calculated (as opposed to estimated), the estimated contribution of the feature x_{i} is updated to

$$
\frac{c_{i} \hat{\mu}_{i}+\left[f(S)-f\left(S-\left\{x_{j}\right\}\right)\right]}{c_{i}+1}
$$

and c_{i} is incremented by 1 , therefore at each stage $\hat{\mu}_{i}$ is the mean contribution of x_{i} observed so far and c_{i} is the number of observations used to calculate that mean.
As long as $c_{i} \geq k$, for the user-supplied constant k, then rather than calculating $f\left(S-\left\{x_{\mathrm{i}}\right\}\right)$ this routine estimates it using $\hat{f}\left(S-\left\{x_{\mathrm{i}}\right\}\right)=f(S)-\gamma \hat{\mu}_{i}$ or $\hat{f}(S)-\gamma \hat{\mu}_{i}$ if $f(S)$ has been estimated, where γ is a user-supplied scaling factor. An estimated score is never used to trim a node or returned as the optimal score.
Setting $k=0$ in this routine will cause the algorithm to always calculate the scores, returning to the branch and bound algorithm of Ridout (1988). In most cases it is preferable to use the fast branch and bound algorithm, by setting $k>0$, unless the score function is iterative in nature, i.e., $f(S)$ must have been calculated before $f\left(S-\left\{x_{i}\right\}\right)$ can be calculated.

4 References

Narendra P M and Fukunaga K (1977) A branch and bound algorithm for feature subset selection IEEE Transactions on Computers 9 917-922
Ridout M S (1988) Algorithm AS 233: An improved branch and bound algorithm for feature subset selection Journal of the Royal Statistics Society, Series C (Applied Statistics) (Volume 37) 1 139-147

Somol P, Pudil P and Kittler J (2004) Fast branch and bound algorithms for optimal feature selection IEEE Transactions on Pattern Analysis and Machine Intelligence (Volume 26) 7 900-912

5 Parameters

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and re-entries, and a final exit, as indicated by the parameter IREVCM. Between intermediate exits and reentries, all parameters other than BSCORE must remain unchanged.

1: IREVCM - INTEGER

Input/Output
On initial entry: must be set to 0 .
On intermediate exit: IREVCM $=1$ and before re-entry the scores associated with LA subsets must be calculated and returned in BSCORE.

The LA subsets are constructed as follows:

DROP $=1$

The j th subset is constructed by dropping the features specified in the first LZ elements of Z and the single feature given in $\mathrm{A}(j)$ from the full set of features, Ω. The subset will therefore contain $\mathrm{M}-\mathrm{LZ}-1$ features.
$\mathrm{DROP}=0$
The j th subset is constructed by adding the features specified in the first LZ elements of Z and the single feature specified in $\mathrm{A}(j)$ to the empty set, \emptyset. The subset will therefore contain $\mathrm{LZ}+1$ features.

In both cases the individual features are referenced by the integers 1 to M with 1 indicating the first feature, 2 the second, etc., for some arbitrary ordering of the features. The same ordering must be used in all calls to H05AAF.
If $L A=0$, the score for a single subset should be returned. This subset is constructed by adding or removing only those features specified in the first LZ elements of Z .

If $\mathrm{LZ}=0$, this subset will either be Ω or \emptyset.
The score associated with the j th subset must be returned in $\operatorname{BSCORE}(j)$.
On intermediate re-entry: IREVCM must remain unchanged.
On final exit: IREVCM $=0$, and the algorithm has terminated.
Constraint: IREVCM $=0$ or 1 .

2: MINCR - INTEGER
Input
On entry: flag indicating whether the scoring function f is increasing or decreasing.
MINCR $=1$
$f\left(S_{i}\right) \leq f\left(S_{j}\right)$, i.e., the subsets with the largest score will be selected.
$\operatorname{MINCR}=0$
$f\left(S_{i}\right) \geq f\left(S_{j}\right)$, i.e., the subsets with the smallest score will be selected.
For all $S_{j} \subseteq \Omega$ and $S_{i} \subseteq S_{j}$.
Constraint: $\mathrm{MINCR}=0$ or 1 .
3: M - INTEGER
Input
On entry: m, the number of features in the full feature set.
Constraint: $\mathrm{M} \geq 2$.

4: IP - INTEGER
Input
On entry: p, the number of features in the subset of interest.
Constraint: $1 \leq \mathrm{IP} \leq \mathrm{M}$.
5: NBEST - INTEGER
Input
On entry: n, the maximum number of best subsets required. The actual number of subsets returned is given by LA on final exit. If on final exit LA \neq NBEST then IFAIL $=53$ is returned.
Constraint: NBEST ≥ 1.
6: DROP - INTEGER
Input/Output
On initial entry: DROP need not be set.
On intermediate exit: flag indicating whether the intermediate subsets should be constructed by dropping features from the full set $(\mathrm{DROP}=1)$ or adding features to the empty set $(\mathrm{DROP}=0)$. See IREVCM for details.

On intermediate re-entry: DROP must remain unchanged.
On final exit: DROP is undefined.
7: LZ - INTEGER
Input/Output
On initial entry: LZ need not be set.
On intermediate exit: the number of features stored in Z .
On intermediate re-entry: LZ must remain unchanged.

On final exit: LZ is undefined.
8: $\quad \mathrm{Z}(\mathrm{M}-\mathrm{IP})-$ INTEGER array
Input/Output
On initial entry: Z need not be set.
On intermediate exit: $\mathrm{Z}(i)$, for $i=1,2, \ldots, \mathrm{LZ}$, contains the list of features which, along with those specified in A, define the subsets whose score is required. See IREVCM for additional details.

On intermediate re-entry: Z must remain unchanged.
On final exit: Z is undefined.
9: LA - INTEGER
Input/Output
On initial entry: LA need not be set.
On intermediate exit: if LA >0, the number of subsets for which a score must be returned.
If LA $=0$, the score for a single subset should be returned. See IREVCM for additional details.
On intermediate re-entry: LA must remain unchanged.
On final exit: the number of best subsets returned.

10: $\mathrm{A}(\max (\mathrm{NBEST}, \mathrm{M}))$ - INTEGER array
Input/Output
On initial entry: A need not be set.
On intermediate exit: $\mathrm{A}(j)$, for $j=1,2, \ldots, \mathrm{LA}$, contains the list of features which, along with those specified in Z, define the subsets whose score is required. See IREVCM for additional details.
On intermediate re-entry: A must remain unchanged.
On final exit: A is undefined.
11: $\quad \operatorname{BSCORE}(\max (\operatorname{NBEST}, \mathrm{M}))-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
On initial entry: BSCORE need not be set.
On intermediate exit: BSCORE is undefined.
On intermediate re-entry: $\operatorname{BSCORE}(j)$ must hold the score for the j th subset as described in IREVCM.

On final exit: holds the score for the LA best subsets returned in BZ.
12: $\mathrm{BZ}(\mathrm{M}-\mathrm{IP}, \mathrm{NBEST})$ - INTEGER array
Input/Output
On initial entry: BZ need not be set.
On intermediate exit: BZ is used for storage between calls to H05AAF.
On intermediate re-entry: BZ must remain unchanged.
On final exit: the j th best subset is constructed by dropping the features specified in $\mathrm{BZ}(i, j)$, for $i=1,2, \ldots, \mathrm{M}-\mathrm{IP}$ and $j=1,2, \ldots, \mathrm{LA}$, from the set of all features, Ω. The score for the j th best subset is given in $\operatorname{BSCORE}(j)$.

13: MINCNT - INTEGER
Input
On entry: k, the minimum number of times the effect of each feature, x_{i}, must have been observed before $f\left(S-\left\{x_{i}\right\}\right)$ is estimated from $f(S)$ as opposed to being calculated directly.

If $k=0$ then $f\left(S-\left\{x_{i}\right\}\right)$ is never estimated. If MINCNT <0 then k is set to 1 .

14: GAMMA - REAL (KIND=nag_wp)
Input
On entry: γ, the scaling factor used when estimating scores. If GAMMA <0 then $\gamma=1$ is used.
15: $\operatorname{ACC}(2)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Input
On entry: a measure of the accuracy of the scoring function, f.
Letting $a_{i}=\epsilon_{1}\left|f\left(S_{i}\right)\right|+\epsilon_{2}$, then when confirming whether the scoring function is strictly increasing or decreasing (as described in MINCR), or when assessing whether a node defined by subset S_{i} can be trimmed, then any values in the range $f\left(S_{i}\right) \pm a_{i}$ are treated as being numerically equivalent.
If $0 \leq \mathrm{ACC}(1) \leq 1$ then $\epsilon_{1}=\mathrm{ACC}(1)$, otherwise $\epsilon_{1}=0$.
If $\operatorname{ACC}(2) \geq 0$ then $\epsilon_{2}=\operatorname{ACC}(2)$, otherwise $\epsilon_{2}=0$.
In most situations setting both ϵ_{1} and ϵ_{2} to zero should be sufficient. Using a nonzero value, when one is not required, can significantly increase the number of subsets that need to be evaluated.

16: ICOMM (LICOMM) - INTEGER array
Communication Array
On initial entry: ICOMM need not be set.
On intermediate exit: ICOMM is used for storage between calls to H05AAF.
On intermediate re-entry: ICOMM must remain unchanged.
On final exit: ICOMM is not defined. The first two elements, ICOMM(1) and ICOMM(2) contain the minimum required value for LICOMM and LRCOMM respectively.

17: LICOMM - INTEGER
Input
On entry: the length of the array ICOMM. If LICOMM is too small and LICOMM ≥ 2 then IFAIL $=172$ is returned and the minimum value for LICOMM and LRCOMM are given by $\operatorname{ICOMM}(1)$ and $\operatorname{ICOMM}(2)$ respectively.

Constraints:

$$
\text { if } \mathrm{MINCNT}=0
$$

$$
\begin{aligned}
& \text { LICOMM } \geq 2 \times \max (\text { NBEST, } \mathrm{M})+\mathrm{M}(\mathrm{M}+2)+(\mathrm{M}+1) \times \max (\mathrm{M}-\mathrm{IP}, 1)+27 \\
& \text { o } \mathrm{t} \mathrm{~h} \mathrm{e} \mathrm{r} \mathrm{w} \mathrm{i} \mathrm{~s} \mathrm{e} \\
& \operatorname{LICOMM} \geq 2 \times \max (\text { NBEST, } \mathrm{M})+\mathrm{M}(\mathrm{M}+3)+(2 \mathrm{M}+1) \times \max (\mathrm{M}-\mathrm{IP}, 1)+25
\end{aligned}
$$

RCOMM(LRCOMM) - REAL (KIND=nag_wp) array
Communication Array
On initial entry: RCOMM need not be set.
On intermediate exit: RCOMM is used for storage between calls to H05AAF.
On intermediate re-entry: RCOMM must remain unchanged.
On final exit: RCOMM is not defined.

19: LRCOMM - INTEGER
Input
On entry: the length of the array RCOMM. If LRCOMM is too small and LICOMM ≥ 2 then IFAIL $=172$ is returned and the minimum value for LICOMM and LRCOMM are given by $\operatorname{ICOMM}(1)$ and $\operatorname{ICOMM}(2)$ respectively.

Constraints:

> if $\mathrm{MINCNT}=0, \mathrm{LRCOMM} \geq 9+\mathrm{NBEST}+\mathrm{M} \times \max (\mathrm{M}-\mathrm{IP}, 1)$;
> otherwise $\mathrm{LRCOMM} \geq 8+\mathrm{M}+\operatorname{NBEST}+\mathrm{M} \times \max (\mathrm{M}-\mathrm{IP}, 1)$

20: IFAIL - INTEGER
Input/Output
On initial entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, because for this routine the values of the output parameters may be useful even if IFAIL $\neq 0$ on exit, the recommended value is -1 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On final exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
IFAIL $=11$
On entry, $\operatorname{IREVCM}=\langle$ value \rangle.
Constraint: $\operatorname{IREVCM}=0$ or 1 .

IFAIL $=21$
On entry, MINCR $=\langle$ value \rangle.
Constraint: $\mathrm{MINCR}=0$ or 1 .
IFAIL $=22$
MINCR has changed between calls.
On intermediate entry, MINCR $=\langle$ value \rangle.
On initial entry, MINCR $=\langle v a l u e\rangle$.
IFAIL $=31$
On entry, $\mathrm{M}=\langle$ value \rangle.
Constraint: $\mathrm{M} \geq 2$.
IFAIL $=32$
M has changed between calls.
On intermediate entry, $\mathrm{M}=\langle$ value \rangle.
On initial entry, $\mathrm{M}=\langle$ value \rangle.
IFAIL $=41$
On entry, $\mathrm{IP}=\langle$ value \rangle and $\mathrm{M}=\langle$ value \rangle.
Constraint: $1 \leq \mathrm{IP} \leq \mathrm{M}$.
IFAIL $=42$
IP has changed between calls.
On intermediate entry, $\mathrm{IP}=\langle$ value \rangle.
On initial entry, $\mathrm{IP}=\langle$ value \rangle.
IFAIL $=51$
On entry, NBEST $=\langle$ value \rangle.
Constraint: NBEST ≥ 1.
IFAIL $=52$
NBEST has changed between calls.
On intermediate entry, NBEST $=\langle$ value \rangle.
On initial entry, NBEST $=\langle v a l u e\rangle$.

IFAIL $=53$
On entry, NBEST $=\langle$ value \rangle.
But only \langle value〉 best subsets could be calculated.
IFAIL $=61$
DROP has changed between calls.
On intermediate entry, DROP $=\langle$ value \rangle.
On initial entry, $\mathrm{DROP}=\langle$ value \rangle.
IFAIL $=71$
LZ has changed between calls.
On entry, $\mathrm{LZ}=\langle$ value \rangle.
On previous exit, $\mathrm{LZ}=\langle$ value \rangle.
IFAIL $=91$
LA has changed between calls.
On entry, LA $=\langle$ value \rangle.
On previous exit, $\mathrm{LA}=\langle$ value \rangle.
IFAIL $=111$
$\operatorname{BSCORE}(\langle$ value $\rangle)=\langle$ value \rangle, which is inconsistent with the score for the parent node. Score for the parent node is \langle value \rangle.

IFAIL $=131$
MINCNT has changed between calls.
On intermediate entry, MINCNT $=\langle$ value \rangle.
On initial entry, MINCNT $=\langle$ value \rangle.
IFAIL $=141$
GAMMA has changed between calls.
On intermediate entry, GAMMA $=\langle$ value \rangle.
On initial entry, GAMMA $=\langle v a l u e\rangle$.
IFAIL $=151$
$\mathrm{ACC}(1)$ has changed between calls.
On intermediate entry, $\mathrm{ACC}(1)=\langle$ value \rangle.
On initial entry, $\operatorname{ACC}(1)=\langle$ value \rangle.
IFAIL $=152$
$\mathrm{ACC}(2)$ has changed between calls.
On intermediate entry, $\mathrm{ACC}(2)=\langle$ value \rangle.
On initial entry, $\operatorname{ACC}(2)=\langle$ value \rangle.
IFAIL $=161$
ICOMM has been corrupted between calls.
IFAIL $=171$
On entry, LICOMM $=\langle$ value \rangle, LRCOMM $=\langle$ value \rangle.
Constraint: LICOMM $\geq\langle$ value \rangle, LRCOMM $\geq\langle$ value \rangle.
ICOMM is too small to return the required array sizes.

IFAIL $=172$
On entry, LICOMM $=\langle$ value \rangle, LRCOMM $=\langle$ value \rangle.
Constraint: LICOMM $\geq\langle$ value \rangle, LRCOMM $\geq\langle$ value \rangle.
The minimum required values for LICOMM and LRCOMM are returned in $\operatorname{ICOMM}(1)$ and ICOMM(2) respectively.

IFAIL $=181$
RCOMM has been corrupted between calls.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

The subsets returned by H05AAF are guaranteed to be optimal up to the accuracy of your calculated scores.

8 Parallelism and Performance

H05AAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The maximum number of unique subsets of size p from a set of m features is $N=\frac{m!}{(m-p)!p!}$. The efficiency of the branch and bound algorithm implemented in H05AAF comes from evaluating subsets at internal nodes of the tree, that is subsets with more than p features, and where possible trimming branches of the tree based on the scores at these internal nodes as described in Narendra and Fukunaga (1977). Because of this it is possible, in some circumstances, for more than N subsets to be evaluated. This will tend to happen when most of the features have a similar effect on the subset score.
If multiple optimal subsets exist with the same score, and NBEST is too small to return them all, then the choice of which of these optimal subsets is returned is arbitrary.

10 Example

This example finds the three linear regression models, with five variables, that have the smallest residual sums of squares when fitted to a supplied dataset. The data used in this example was simulated.

10.1 Program Text

! H05AAF Example Program Text
! Mark 25 Release. NAG Copyright 2014. Module h05aafe_mod
.. Use Statements .. Use nag_library, Only: nag_wp .. Implicit None Statement .. Implicit None
! .. Accessibility Statements .. Private Public

> : : calc_subset_score, free_subset_score
.. Parameters ..
Integer, Parameter, Public $\quad:$ nin $=5$, nout $=6$
.. Derived Type Definitions .
Type, Public
: : calc_subset_data
Integer
: : n, ldq, ldx
Real (Kind=nag_wp)
: : tol
Real (Kind=nag_wp), Allocatable
$:: x(:,:), y(:), b(:), \operatorname{cov}(:)$,
h(:), p(:), q(:,:), res(:), \&
Integer, Allocatable
se(:), wk(:), wt(:)
: : isx(:)
Character (1)
:: mean, weight
End Type calc_subset_data
Contains
Subroutine calc_subset_score(m,drop,lz,z,la,a,bscore,cs)
Calculate the score associated with a particular set of feature subsets.
M,DROP,LZ,Z,LA,A and BSCORE are all as described in the documentation of
H05AAF.
CS - Variable of type CALC_SUBSET_DATA that holds any additional data
required by this routine
This particular example finds the set, of a given size, of explanatory
variables that best fit a response variable when a linear regression
model is used. Therefore the feature set is the set of all the
explanatory variables and the best set of features is defined as set of
explanatory variables that gives the smallest residual sums of squares.
See the documentation for GO2DAF for details on linear regression
models.
.. Use Statements ..
Use nag_library, Only: g02daf
.. Scalar Arguments ..
Type (calc_subset_data), Intent (Inout) : : cs
Integer, Intent (In) : drop, la, lz, m
.. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) : bscore(:)
Integer, Intent (In) : a(:), z(:)
.. Local Scalars ..
Real (Kind=nag_wp) : : rss
Integer :: i, idf, ifail, inv_drop, ip, \&
Logical
irank
Character (200)
: : svd
: : line
! .. Intrinsic Procedures ..
Intrinsic : : abs, allocated, count, max
! .. Executable Statements ..
Continue
Allocate various arrays and read in the data if this is the first time
this routine has been called
If (.Not. allocated (cs\%x)) Then
Read in the number of observations for the data used in the linear
regression skipping any headings or blank lines
Do
Read (nin,*,Iostat=ifail) line

```
        If (ifail/=0) Exit
        Read (line,*,Iostat=ifail) cs%n
        If (ifail==0) Exit
    End Do
    Read in the control parameters for the linear regression
    Read (nin,*) cs%tol
    Read in the data
    cs%ldx = cs%n
    Allocate (cs%x(cs%ldx,m),cs%y(cs%n))
    Read (nin,*)(cs%x(i,1:m),cs%y(i),i=1,cs%n)
    No intercept term and no weights
    cs%mean = 'Z'
    cs%weight = 'U'
    Allocate memory required by the regression routine
    cs%ldq = cs%n
    Allocate (cs%b(m),cs%cov((m*m+m)/2),cs%h(cs%n),cs%p(m*(m+ &
        2)) ,cs%q(cs%ldq,m+1),cs%res(cs%n),cs%se(m),cs%wk(m*m+5*(m- &
        1)),cs%wt(1),cs%isx(m))
        End If
        Set up the initial feature set.
        If DROP = O, this is the Null set (i.e. no features).
        If DROP = 1 then this is the full set (i.e. all features)
        cs%isx(1:m) = drop
        Add (if DROP = O) or remove (if DROP = 1) the all the features specified
        in Z
        inv_drop = abs(drop-1)
        Do i}=1, l
    cs%isx(z(i)) = inv_drop
End Do
Do i = 1, max(la,1)
    If (la>0) Then
        If (i>1) Then
                Reset the feature altered at the last iteration
                cs%isx(a(i-1)) = drop
        End If
        Add or drop the I'th feature in A
        cs%isx(a(i)) = inv_drop
    End If
    ip = count(cs%isx(1:m)==1)
    Fit the regression model
    ifail = 0
    Call g02daf(cs%mean,cs%weight,cs%n,cs%x,cs%ldx,m,cs%isx,ip,cs%y, &
        cs%wt,rss,idf,cs%b,cs%se,cs%cov,cs%res,cs%h,cs%q,cs%ldq,svd,irank, &
        cs%p,cs%tol,cs%wk,ifail)
    Return the score (the residual sums of squares)
    bscore(i) = rss
    End Do
    End Subroutine calc_subset_score
    Subroutine free_subset_score(cs)
    .. Scalar Arguments ..
    Type (calc_subset_data), Intent (Inout) :: cs
    .. Intrinsic Procedures ..
    Intrinsic :: allocated
    .. Executable Statements ..
    If (allocated(cs%x)) Then
        Deallocate (cs%x)
    End If
    If (allocated(cs%y)) Then
        Deallocate (cs%y)
```

```
    End If
    If (allocated(cs%b)) Then
        Deallocate (cs%b)
    End If
    If (allocated(cs%cov)) Then
        Deallocate (cs%cov)
    End If
    If (allocated(cs%h)) Then
        Deallocate (cs%h)
    End If
    If (allocated(cs%p)) Then
        Deallocate (cs%p)
    End If
    If (allocated(cs%q)) Then
        Deallocate (cs%q)
    End If
    If (allocated(cs%res)) Then
        Deallocate (cs%res)
    End If
If (allocated(cs%se)) Then
        Deallocate (cs%se)
    End If
    If (allocated(cs%wk)) Then
        Deallocate (cs%wk)
    End If
If (allocated(cs%wt)) Then
        Deallocate (cs%wt)
    End If
    If (allocated(cs%isx)) Then
        Deallocate (cs%isx)
    End If
    End Subroutine free_subset_score
End Module h05aafe_mod
Program h05aafe
! .. Use Statements ..
    Use nag_library, Only: h05aaf, nag_wp
    Use h05aafe_mod, Only: calc_subset_data, calc_subset_score,
                                    free_subset_score, nin, nout
    .. Implicit None Statement ..
    Implicit None
! .. Local Scalars ..
    Type (calc_subset_data) :: cs
    Real (Kind=nag_wp) :: gamma
    Integer :: cnt, drop, i, ifail, ip, irevcm, &
    j, la, licomm, lrcomm, lz, m, &
    mincnt, mincr, mip, nbest
    .. Local Arrays ..
    Real (Kind=nag_wp) :: acc(2)
    Real (Kind=nag_wp), Allocatable :: bscore(:), rcomm(:)
    Integer, Allocatable :: a(:), bz(:,:), ibz(:), icomm(:), &
    z(:)
    Logical, Allocatable :: mask(:)
    .. Intrinsic Procedures ..
    Intrinsic :: max, pack
    .. Executable Statements ..
    Write (nout,*) 'H05AAF Example Program Results'
    Write (nout,*)
    Skip headings in data file
    Read (nin,*)
    Read (nin,*)
    Read in the problem size
    Read (nin,*) m, ip, nbest
    Read in the control parameters for the subset selection
    Read (nin,*) mincr, mincnt, gamma, acc(1:2)
    Allocate memory required by the subset selection routine
```

```
    mip = m - ip
    Allocate (z(mip),a(max(nbest,m)),bz(mip,nbest),bscore(max(nbest,m)))
! Allocate dummy communication arrays, as we will query the required size
    licomm = 2
    lrcomm = 0
    Allocate (icomm(licomm),rcomm(lrcomm))
! Query the required length for the communication arrays
    irevcm = O
    ifail = 1
    Call h05aaf(irevcm,mincr,m,ip,nbest,drop,lz,z,la,a,bscore,bz,mincnt, &
        gamma,acc,icomm,licomm,rcomm,lrcomm,ifail)
! Extract the required sizes from the communication array
    licomm = icomm(1)
    lrcomm = icomm(2)
! Reallocate communication arrays to the correct size
    Deallocate (icomm,rcomm)
    Allocate (icomm(licomm),rcomm(lrcomm))
! Initialise reverse communication control flag
    irevcm = O
    Call the reverse communication best subset routine in a loop.
! The loop should terminate when IRECVM = 0 on exit
    cnt = 0
rev_lp: Do
        ifail = -1
        Call h05aaf(irevcm,mincr,m,ip,nbest,drop,lz,z,la,a,bscore,bz,mincnt, &
        gamma,acc,icomm,licomm,rcomm,lrcomm,ifail)
        If (irevcm==0) Then
            If (ifail==0 .Or. ifail==53) Then
                No error, or a warning was issued
                    Exit rev_lp
                Else
                    An error occurred
                    Go To 100
            End If
        End If
        Calculate and return the score for the required models and keep track
        of the number of subsets evaluated
        cnt = cnt + max(1,la)
        Call calc_subset_score(m,drop,lz,z,la,a,bscore,cs)
            End Do rev_lp
            Call free_subset_score(cs)
! Titles
    Write (nout,99999) ' Score Feature Subset'
    Write (nout,99999) ' ----- --------------'
    Display the best subsets and corresponding scores. H05AAF returns a list
    of features excluded from the best subsets, so this is inverted to give
    the set of features included in each subset
    Allocate (ibz(m),mask(m))
    ibz(1:m) = (/(i,i=1,m)/)
    Do i = 1, la
    mask(1:m) = .True.
    Do j = 1, mip
        mask(bz(j,i)) = .False.
    End Do
    Write (nout,99998) bscore(i), pack(ibz,mask)
    End Do
    Write (nout,*)
    If (ifail==53) Then
    Write (nout,99997) nbest, &
```

```
    ' subsets of the requested size do not exist, only ', la, \&
    ' are displayed.'
```

End If
Write (nout,99996) cnt, ' subsets evaluated in total'

100 Continue

```
99999 Format (1X,A)
99998 Format (1X,E12.5,100(1X,I5))
9 9 9 9 7 ~ F o r m a t ~ ( I X , I O , A , I O , A )
99996 Format (1X,IO,A)
```

End Program h05aafe

10.2 Program Data

H05AAF Example Program Data
Data required by H05AAF

$0-1-1.0-1.0-1.0 \quad:: M I N C R$, MINCNT, GAMMA, ACC (1:2)

0.40	-1.45	-0.98	2.10	-1.09	-0.53	-0.38	
-1.36	0.13	0.70	-1.51	0.08	-0.62	-0.64	-32.04
0.43	-0.86	0.70	-1.07	-0.76	0.72	-0.14	
-1.58	0.00	0.58	-0.21	1.30	2.02	1.52	23.36
-0.48	0.01	1.30	0.58	-0.54	1.09	0.91	
2.90	1.32	-1.20	-0.59	-0.51	0.20	-1.74	-5.58
-1.32	-1.41	-0.58	-1.29	1.61	-0.35	-0.72	
-1.92	-1.09	0.56	-0.87	-0.71	1.25	0.10	2.48
1.43	0.69	1.34	-0.32	2.84	-1.43	-0.47	
-0.01	0.83	-0.72	-0.78	0.50	-1.22	0.54	-5.30
0.82	0.46	0.15	-0.57	0.93	1.33	-0.23	
-1.07	0.76	0.25	-1.96	0.39	0.24	-0.26	-7.77
-0.91	0.23	-0.19	1.58	-0.27	0.33	-0.60	
-1.39	-0.30	-0.81	-0.95	0.88	-0.09	-0.35	-34.25
0.65	-1.14	1.18	-1.06	-0.68	-0.22	0.21	
0.94	1.08	0.81	-0.33	0.42	-0.90	0.49	26.78
-0.36	-0.50	-0.02	-0.04	0.77	0.62	-1.35	
-0.64	1.20	1.22	0.18	-1.39	-0.81	-0.99	-11.85
-1.82	1.06	0.28	0.14	0.62	-0.80	-1.08	
-2.15	1.37	1.57	-1.48	-0.79	0.28	-0.20	-8.62
1.54	0.50	0.13	-0.68	0.26	-1.13	0.62	
-0.43	0.39	1.14	0.15	1.03	0.46	0.40	12.35
-1.61	-0.61	0.93	-0.37	0.44	-1.45	0.58	
-1.77	0.72	-2.05	-0.03	-1.24	-1.40	-0.06	-1.54
-0.48	0.67	0.04	0.27	-0.84	-0.06	-3.67	
0.09	1.66	-0.30	1.67	1.08	0.00	0.43	-16.59
-1.65	-1.16	-1.17	1.12	0.11	-0.15	0.48	
-1.72	1.08	-0.94	0.49	-0.56	0.95	1.09	-8.69
-0.85	-0.02	1.18	-1.16	0.49	1.56	-0.60	
0.32	0.72	-1.20	2.52	1.78	0.16	-0.01	7.82
-0.60	-0.73	-1.23	1.50	0.40	-0.20	-0.65	
0.68	1.09	0.40	-1.50	-2.10	0.21	-0.18	-18.56
-0.66	-0.01	-0.01	0.85	-2.04	1.17	-0.56	
1.72	-0.18	1.14	-0.96	-0.92	-0.28	1.58	17.21

10.3 Program Results

H05AAF Example Program Results
Score

$0.10475 \mathrm{E}+04$
$0.10599 \mathrm{E}+04$
$0.10702 \mathrm{E}+04$

Feature	Subset	
- --------		
4	7	8
4	5	7
4	5	7

10	14
8	14
10	14

45 subsets evaluated in total

