
NAG Library Routine Document

G13NEF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13NEF detects change points in a univariate time series, that is, the time points at which some feature
of the data, for example the mean, changes. Change points are detected using binary segmentation for a
user-supplied cost function.

2 Specification

SUBROUTINE G13NEF (N, BETA, MINSS, MDEPTH, CHGPFN, NTAU, TAU, Y, IUSER,
RUSER, IFAIL)

&

INTEGER N, MINSS, MDEPTH, NTAU, TAU(*), IUSER(*), IFAIL
REAL (KIND=nag_wp) BETA, Y(*), RUSER(*)
EXTERNAL CHGPFN

3 Description

Let y1:n ¼ yj : j ¼ 1; 2; . . . ; n
� �

denote a series of data and � ¼ �i : i ¼ 1; 2; . . . ;mf g denote a set of m
ordered (strictly monotonic increasing) indices known as change points with 1 � �i � n and �m ¼ n. For
ease of notation we also define �0 ¼ 0. The m change points, � , split the data into m segments, with the
ith segment being of length ni and containing y�i�1þ1:�i .

Given a cost function, C y�i�1þ1:�ið Þ, G13NEF gives an approximate solution to

minimize
m;�

Xm

i¼1

C y�i�1þ1:�ið Þ þ �ð Þ

where � is a penalty term used to control the number of change points. The solution is obtained in an
iterative manner as follows:

1. Set u ¼ 1, w ¼ n and k ¼ 0

2. Set k ¼ kþ 1. If k > K, where K is a user-supplied control parameter, then terminate the process
for this segment.

3. Find v that minimizes

C yu:vð Þ þ C yvþ1:wð Þ
4. Test

C yu:vð Þ þ C yvþ1:wð Þ þ � < C yu:wð Þ ð1Þ
5. If inequality (1) is false then the process is terminated for this segment.

6. If inequality (1) is true, then v is added to the set of change points, and the segment is split into two
subsegments, yu:v and yvþ1:w. The whole process is repeated from step 2 independently on each
subsegment, with the relevant changes to the definition of u and w (i.e., w is set to v when
processing the left hand subsegment and u is set to vþ 1 when processing the right hand
subsegment.

The change points are ordered to give � .

G13 – Time Series Analysis G13NEF

Mark 25 G13NEF.1

4 References

Chen J and Gupta A K (2010) Parameteric Statisical Change Point Analysis With Applications to
Genetics Medicine and Finance Second Edition Birkhäuser

5 Parameters

1: N – INTEGER Input

On entry: n, the length of the time series.

Constraint: N � 2.

2: BETA – REAL (KIND=nag_wp) Input

On entry: �, the penalty term.

There are a number of standard ways of setting �, including:

SIC or BIC
� ¼ p� log nð Þ.

AIC
� ¼ 2p.

Hannan-Quinn
� ¼ 2p� log log nð Þð Þ.

where p is the number of parameters being treated as estimated in each segment. The value of p
will depend on the cost function being used.

If no penalty is required then set � ¼ 0. Generally, the smaller the value of � the larger the
number of suggested change points.

3: MINSS – INTEGER Input

On entry: the minimum distance between two change points, that is �i � �i�1 � MINSS.

Constraint: MINSS � 2.

4: MDEPTH – INTEGER Input

On entry: K, the maximum depth for the iterative process, which in turn puts an upper limit on
the number of change points with m � 2K .

If K � 0 then no limit is put on the depth of the iterative process and no upper limit is put on the
number of change points, other than that inherent in the length of the series and the value of
MINSS.

5: CHGPFN – SUBROUTINE, supplied by the user. External Procedure

CHGPFN must calculate a proposed change point, and the associated costs, within a specified
segment.

The specification of CHGPFN is:

SUBROUTINE CHGPFN (SIDE, U, W, MINSS, V, COST, Y, IUSER, RUSER,
INFO)

&

INTEGER SIDE, U, W, MINSS, V, IUSER(*), INFO
REAL (KIND=nag_wp) COST(3), Y(*), RUSER(*)

G13NEF NAG Library Manual

G13NEF.2 Mark 25

1: SIDE – INTEGER Input

On entry: flag indicating what CHGPFN must calculate and at which point of the Binary
Segmentation it has been called.

SIDE ¼ �1
only C yu:wð Þ need be calculated and returned in COSTð1Þ, neither V nor the other
elements of COST need be set. In this case, u ¼ 1 and w ¼ n.

SIDE ¼ 0
all elements of COST and V must be set. In this case, u ¼ 1 and w ¼ n.

SIDE ¼ 1
the segment, yu:w, is a left hand side subsegment from a previous iteration of the
Binary Segmentation algorithm. All elements of COST and V must be set.

SIDE ¼ 2
the segment, yu:w, is a right hand side subsegment from a previous iteration of the
Binary Segmentation algorithm. All elements of COST and V must be set.

The distinction between SIDE ¼ 1 and 2 may allow for CHGPFN to be implemented in
a more efficient manner. See section Section 10 for one such example.

The first call to CHGPFN will always have SIDE ¼ �1 and the second call will always
have SIDE ¼ 0. All subsequent calls will be made with SIDE ¼ 1 or 2.

2: U – INTEGER Input

On entry: u, the start of the segment of interest.

3: W – INTEGER Input

On entry: w, the end of the segment of interest.

4: MINSS – INTEGER Input

On entry: the minimum distance between two change points, as passed to G13NEF.

5: V – INTEGER Output

On exit: if SIDE ¼ �1 then V need not be set.

if SIDE 6¼ �1 then v, the proposed change point. That is, the value which minimizes

minimize
v

C yu:vð Þ þ C yvþ1:wð Þ

for v ¼ uþMINSS� 1 to w�MINSS.

6: COSTð3Þ – REAL (KIND=nag_wp) array Output

On exit: costs associated with the proposed change point, v.

If SIDE ¼ �1 then COSTð1Þ ¼ C yu:wð Þ and the remaining two elements of COST need
not be set.

If SIDE 6¼ �1 then

COSTð1Þ ¼ C yu:vð Þ þ C yvþ1:wð Þ.
COSTð2Þ ¼ C yu:vð Þ.
COSTð3Þ ¼ C yvþ1:wð Þ.

7: Yð�Þ – REAL (KIND=nag_wp) array User Data

CHGPFN is called with Y as supplied to G13NEF. You are free to use the array Y to
supply information to CHGPFN.

G13 – Time Series Analysis G13NEF

Mark 25 G13NEF.3

Y is supplied in addition to IUSER and RUSER for ease of coding as in most cases
CHGPFN will require (functions of) the time series, y.

8: IUSERð�Þ – INTEGER array User Workspace
9: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

CHGPFN is called with the parameters IUSER and RUSER as supplied to G13NEF. You
are free to use the arrays IUSER and RUSER to supply information to CHGPFN as an
alternative to using COMMON global variables.

10: INFO – INTEGER Input/Output

On entry: INFO ¼ 0.

On exit: in most circumstances INFO should remain unchanged.

If INFO is set to a strictly positive value then G13NEF terminates with IFAIL ¼ 51.

If INFO is set to a strictly negative value the current segment is skipped (i.e., no change
points are considered in this segment) and G13NEF continues as normal. If INFO was
set to a strictly negative value at any point and no other errors occur then G13NEF will
terminate with IFAIL ¼ 52.

CHGPFN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which G13NEF is called. Parameters denoted as Input must not be changed by
this procedure.

6: NTAU – INTEGER Output

On exit: m, the number of change points detected.

7: TAUð�Þ – INTEGER array Output

Note: the dimension of the array TAU must be at least min ceiling N
MINSS; 2

MDEPTH
� �

if

MDEPTH > 0, and at least ceiling N
MINSS otherwise.

On exit: the first m elements of TAU hold the location of the change points. The ith segment is
defined by y �i�1þ1ð Þ to y�i , where �0 ¼ 0 and �i ¼ TAUðiÞ; 1 � i � m.

The remainder of TAU is used as workspace.

8: Yð�Þ – REAL (KIND=nag_wp) array User Data

Y is not used by G13NEF, but is passed directly to CHGPFN and may be used to pass information
to this routine. Y will usually be used to pass (functions of) the time series, y of interest.

9: IUSERð�Þ – INTEGER array User Workspace
10: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by G13NEF, but are passed directly to CHGPFN and may be
used to pass information to this routine as an alternative to using COMMON global variables.

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

G13NEF NAG Library Manual

G13NEF.4 Mark 25

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, N ¼ valueh i.
Constraint: N � 2.

IFAIL ¼ 31

On entry, MINSS ¼ valueh i.
Constraint: MINSS � 2.

IFAIL ¼ 51

User requested termination by setting INFO ¼ valueh i.

IFAIL ¼ 52

User requested a segment to be skipped by setting INFO ¼ valueh i.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G13NEF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

G13NDF performs the same calculations for a cost function selected from a provided set of cost
functions. If the required cost function belongs to this provided set then G13NDF can be used without
the need to provide a cost function routine.

G13 – Time Series Analysis G13NEF

Mark 25 G13NEF.5

10 Example

This example identifies changes in the scale parameter, under the assumption that the data has a gamma
distribution, for a simulated dataset with 100 observations. A penalty, � of 3:6 is used and the minimum
segment size is set to 3. The shape parameter is fixed at 2:1 across the whole input series.

The cost function used is

C y�i�1þ1:�ið Þ ¼ 2ani logSi � log anið Þð Þ

where a is a shape parameter that is fixed for all segments and ni ¼ �i � �i�1 þ 1.

10.1 Program Text

! G13NEF Example Program Text
! Mark 25 Release. NAG Copyright 2014.

Module g13nefe_mod

! G13NEF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: chgpfn, get_data

Contains
Subroutine chgpfn(side,u,w,minss,v,cost,y,iuser,ruser,info)

! Routine to calculate a proposed change point and associated cost
! The cost is based on the likelihood of the gamma distribution

! .. Use Statements ..
Use nag_library, Only: x07caf, x07cbf

! .. Scalar Arguments ..
Integer, Intent (Inout) :: info
Integer, Intent (In) :: minss, side, u, w
Integer, Intent (Out) :: v

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: cost(3)
Real (Kind=nag_wp), Intent (Inout) :: ruser(0:*), y(*)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: dn, shape, this_cost, tmp, ys
Integer :: floc, i, li, lloc

! .. Local Arrays ..
Integer :: cexmode(3), texmode(3)

! .. Intrinsic Procedures ..
Intrinsic :: log

! .. Executable Statements ..
Continue

! The gamma cost function used below can result in log(0) being taken
! (if there is a segment of zeros in Y), this leads to a cost of -Inf
! (which is correct), but we need to make sure that the compiler
! doesn’t stop at the creation of the -Inf

! Save the current IEEE exception mode
Call x07caf(cexmode)

! Set the IEEE exception mode to not trap division by zero
texmode(:) = cexmode(:)
texmode(2) = 0
Call x07cbf(texmode)

! Extract shape from RUSER
shape = ruser(0)

! Calculate the first and last positions for potential change

G13NEF NAG Library Manual

G13NEF.6 Mark 25

! points, conditional on the fact that each sub-segment must be
! at least MINSS wide

floc = u + minss - 1
lloc = w - minss

! In order to calculate the cost of having a change point at I, we
! need to calculate C(Y(FLOC:I)) and C(Y(I+1:LLOC)), where C(.) is
! the cost function (based on the gamma distribution in this example).
! Rather than calculate these values at each call to CHGPFN we store
! the values for later use

! If SIDE = 1 (i.e. we are working with a left hand sub-segment),
! we already have C(Y(FLOC:I)) for this value of FLOC, so only need
! to calculate C(Y(I+1:LLOC)), similarly when SIDE = 2 we only need
! to calculate C(Y(FLOC:I))
! When SIDE = -1, we need the cost of the full segment, which we do
! in a forwards manner (calculating C(Y(FLOC:I)) in the process), so
! when SIDE = 0 we only need to calculate C(Y(I:1:LLOC))

! Get the intermediate costs
ys = 0.0_nag_wp
dn = 0.0_nag_wp
If (side==0 .Or. side==1) Then

! RUSER(2*I) = C(Y(I+1:W))
Do i = w, floc + 1, -1

dn = dn + 1.0_nag_wp
tmp = dn*shape
ys = ys + y(i)
ruser(2*i-2) = 2.0_nag_wp*tmp*(log(ys)-log(tmp))

End Do

Else
! RUSER(2*I-1) = C(Y(U:I))

If (side==-1) Then
li = w

Else
li = lloc

End If
Do i = u, li

dn = dn + 1.0_nag_wp
tmp = dn*shape
ys = ys + y(i)
ruser(2*i-1) = 2.0_nag_wp*tmp*(log(ys)-log(tmp))

End Do
End If

If (side>=0) Then
! Need to find a potential change point

v = 0
cost(1) = 0.0_nag_wp

! Loop over all possible change point locations
Do i = floc, lloc

this_cost = ruser(2*i-1) + ruser(2*i)

If (this_cost<cost(1) .Or. v==0) Then
! Update the proposed change point location

v = i
cost(1) = this_cost
cost(2) = ruser(2*i-1)
cost(3) = ruser(2*i)

End If
End Do

Else
! Need to calculate the cost for the full segment

cost(1) = ruser(2*w-1)
! No need to populate the rest of COST or V

End If

! Reset the IEEE exception mode back to what it was
Call x07cbf(cexmode)

G13 – Time Series Analysis G13NEF

Mark 25 G13NEF.7

! Set info nonzero to terminate execution for any reason
info = 0

End Subroutine chgpfn

Subroutine get_data(nin,n,y,iuser,ruser)
! Read in data that is specific to the cost function

! .. Scalar Arguments ..
Integer, Intent (In) :: n, nin

! .. Array Arguments ..
Real (Kind=nag_wp), Allocatable, Intent (Out) :: ruser(:), y(:)
Integer, Allocatable, Intent (Out) :: iuser(:)

! .. Local Scalars ..
Real (Kind=nag_wp) :: shape

! .. Executable Statements ..
Continue

! Read in the series of interest
Allocate (y(1:n))
Read (nin,*) y(1:n)

! Read in the shape parameter for the Gamma distribution
Read (nin,*) shape

! We are going to use RUSER for two purposes, firstly to store the shape
! parameter, and we also need an additional 2*N elements of workspace
! we reference from 0 to make the coding easier later

! IUSER is not going to be used
Allocate (iuser(0),ruser(0:2*n))

! Store the shape parameter in the 0th element of RUSER
ruser(0) = shape

! We will be populating the other elements of RUSER in the first
! call to CHGPFN

Return
End Subroutine get_data

End Module g13nefe_mod

Program g13nefe

! .. Use Statements ..
Use nag_library, Only: g13nef, nag_wp
Use g13nefe_mod, Only: chgpfn, get_data

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: beta
Integer :: i, ifail, mdepth, minss, n, ntau

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ruser(:), y(:)
Integer, Allocatable :: iuser(:), tau(:)

! .. Intrinsic Procedures ..
Intrinsic :: repeat

! .. Executable Statements ..
Continue
Write (nout,*) ’G13NEF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in the problem size, penalty, minimum segment size and
! maximum depth

Read (nin,*) n, beta, minss, mdepth

G13NEF NAG Library Manual

G13NEF.8 Mark 25

! Read in the rest of the data, that (may be) dependent on the cost function
Call get_data(nin,n,y,iuser,ruser)

! Allocate output arrays
Allocate (tau(n))

! Call routine to detect change points
ifail = 0
Call g13nef(n,beta,minss,mdepth,chgpfn,ntau,tau,y,iuser,ruser,ifail)

! Display the results
Write (nout,99999) ’ -- Change Points --’
Write (nout,99999) ’ Number Position’
Write (nout,99999) repeat(’=’,21)
Do i = 1, ntau

Write (nout,99998) i, tau(i)
End Do

99999 Format (1X,A)
99998 Format (1X,I4,7X,I6)

End Program g13nefe

10.2 Program Data

G13NEF Example Program Data
100 3.4 3 0 :: N,BETA,MINSS,MDEPTH
0.00 0.78 0.02 0.17 0.04 1.23 0.24 1.70 0.77 0.06
0.67 0.94 1.99 2.64 2.26 3.72 3.14 2.28 3.78 0.83
2.80 1.66 1.93 2.71 2.97 3.04 2.29 3.71 1.69 2.76
1.96 3.17 1.04 1.50 1.12 1.11 1.00 1.84 1.78 2.39
1.85 0.62 2.16 0.78 1.70 0.63 1.79 1.21 2.20 1.34
0.04 0.14 2.78 1.83 0.98 0.19 0.57 1.41 2.05 1.17
0.44 2.32 0.67 0.73 1.17 0.34 2.95 1.08 2.16 2.27
0.14 0.24 0.27 1.71 0.04 1.03 0.12 0.67 1.15 1.10
1.37 0.59 0.44 0.63 0.06 0.62 0.39 2.63 1.63 0.42
0.73 0.85 0.26 0.48 0.26 1.77 1.53 1.39 1.68 0.43 :: End of Y

2.1 :: shape parameter used in COSTFN

10.3 Program Results

G13NEF Example Program Results

-- Change Points --
Number Position

=====================
1 5
2 12
3 32
4 70
5 73
6 100

This example plot shows the original data series and the estimated change points.

G13 – Time Series Analysis G13NEF

Mark 25 G13NEF.9

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80 90 100

V
al

ue

Time

Example Program
Simulated time series and the corresponding changes in scale b,

assuming y = Ga(2.1,b)

G13NEF NAG Library Manual

G13NEF.10 (last) Mark 25

	G13NEF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Chen and Gupta (2010)

	5 Parameters
	N
	BETA
	MINSS
	MDEPTH
	CHGPFN
	SIDE
	U
	W
	MINSS
	V
	COST
	Y
	IUSER
	RUSER
	INFO

	NTAU
	TAU
	Y
	IUSER
	RUSER
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=11
	IFAIL=31
	IFAIL=51
	IFAIL=52
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

