
NAG Library Routine Document

G13EKF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

G13EKF applies the Unscented Kalman Filter (UKF) to a nonlinear state space model, with additive
noise.

G13EKF uses forward communication for evaluating the nonlinear functionals of the state space model.

2 Specification

SUBROUTINE G13EKF (MX, MY, Y, LX, LY, F, H, X, ST, IUSER, RUSER, IFAIL)

INTEGER MX, MY, IUSER(*), IFAIL
REAL (KIND=nag_wp) Y(MY), LX(MX,MX), LY(MY,MY), X(MX), ST(MX,MX),

RUSER(*)
&

EXTERNAL F, H

3 Description

G13EKF applies the Unscented Kalman Filter (UKF), as described in Julier and Uhlmann (1997b) to a
nonlinear state space model, with additive noise, which, at time t, can be described by:

xtþ1 ¼ F xtð Þ þ vt
yt ¼ H xtð Þ þ ut

where xt represents the unobserved state vector of length mx and yt the observed measurement vector of
length my. The process noise is denoted vt, which is assumed to have mean zero and covariance
structure �x, and the measurement noise by ut, which is assumed to have mean zero and covariance
structure �y.

3.1 Unscented Kalman Filter Algorithm

Given x̂0, an initial estimate of the state and P0 and initial estimate of the state covariance matrix, the
UKF can be described as follows:

(a) Generate a set of sigma points (see Section 3.2):

X t ¼ x̂t�1 x̂t�1 þ �
ffiffiffiffiffiffiffiffiffi
Pt�1

p
x̂t�1 � �

ffiffiffiffiffiffiffiffiffi
Pt�1

ph i
ð1Þ

(b) Evaluate the known model function F :

F t ¼ F X tð Þ ð2Þ

The function F is assumed to accept the mx � n matrix, X t and return an mx � n matrix, F t. The
columns of both X t and F t correspond to different possible states. The notation F t;i is used to
denote the ith column of F t, hence the result of applying F to the ith possible state.

(c) Time Update:

x̂t ¼
Xn
i¼1

Wm
i F t;i ð3Þ

Pt ¼
Xn
i¼1

Wc
i F t;i � x̂t
� �

F t;i � x̂t
� �T þ�x ð4Þ

G13 – Time Series Analysis G13EKF

Mark 25 G13EKF.1

(d) Redraw another set of sigma points (see Section 3.2):

Yt ¼ x̂t x̂t þ �
ffiffiffiffiffi
Pt

p
x̂t � �

ffiffiffiffiffi
Pt

ph i
ð5Þ

(e) Evaluate the known model function H:

Ht ¼ H Ytð Þ ð6Þ

The function H is assumed to accept the mx � n matrix, Yt and return an my � n matrix, Ht. The
columns of both Yt and Ht correspond to different possible states. As above Ht;i is used to denote
the ith column of Ht.

(f) Measurement Update:

ŷt ¼
Xn
i¼1

Wm
i Ht;i ð7Þ

Pyyt ¼
Xn
i¼1

Wc
i Ht;i � ŷt
� �

Ht;i � ŷt
� �T þ�y ð8Þ

Pxyt ¼
Xn
i¼1

Wc
i F t;i � x̂t
� �

Ht;i � ŷt
� �T ð9Þ

Kt ¼ PxytP�1
yyt

ð10Þ
x̂t ¼ x̂t þKt yt � ŷtð Þ ð11Þ
Pt ¼ Pt �KtPyytKT

t ð12Þ
Here Kt is the Kalman gain matrix, x̂t is the estimated state vector at time t and Pt the corresponding
covariance matrix. Rather than implementing the standard UKF as stated above G13EKF uses the
square-root form described in the Haykin (2001).

3.2 Sigma Points

A nonlinear state space model involves propagating a vector of random variables through a nonlinear
system and we are interested in what happens to the mean and covariance matrix of those variables.
Rather than trying to directly propagate the mean and covariance matrix, the UKF uses a set of carefully
chosen sample points, referred to as sigma points, and propagates these through the system of interest.
An estimate of the propagated mean and covariance matrix is then obtained via the weighted sample
mean and covariance matrix.

For a vector of m random variables, x, with mean � and covariance matrix �, the sigma points are
usually constructed as:

X t ¼ � �þ �
ffiffiffiffi
�
p

�� �
ffiffiffiffi
�
ph i

When calculating the weighted sample mean and covariance matrix two sets of weights are required, one
used when calculating the weighted sample mean, denoted Wm and one used when calculated the
weighted sample covariance matrix, denoted Wc. The weights and multiplier, �, are constructed as
follows:

� ¼ �2 Lþ �ð Þ � L
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Lþ �
p

Wm
i ¼

�
Lþ� i ¼ 1

1
2 Lþ�ð Þ i ¼ 2; 3; . . . ; 2Lþ 1

�

Wc
i ¼

�
Lþ�þ 1� �2 þ � i ¼ 1

1
2 Lþ�ð Þ i ¼ 2; 3; . . . ; 2Lþ 1

�

where, usually L ¼ m and �; � and � are constants. The total number of sigma points, n, is given by
2Lþ 1. The constant � is usually set to somewhere in the range 10�4 � � � 1 and for a Gaussian
distribution, the optimal values of � and � are 3� L and 2 respectively.

G13EKF NAG Library Manual

G13EKF.2 Mark 25

The constants, �, � and � are given by � ¼ 3�mx, � ¼ 1:0 and � ¼ 2. If more control is required over
the construction of the sigma points then the reverse communication routine, G13EJF, can be used
instead.

4 References

Haykin S (2001) Kalman Filtering and Neural Networks John Wiley and Sons

Julier S J (2002) The scaled unscented transformation Proceedings of the 2002 American Control
Conference (Volume 6) 4555–4559

Julier S J and Uhlmann J K (1997a) A consistent, debiased method for converting between polar and
Cartesian coordinate systems Proceedings of AeroSense97, International Society for Optics and
Phonotonics 110–121

Julier S J and Uhlmann J K (1997b) A new extension of the Kalman Filter to nonlinear systems
International Symposium for Aerospace/Defense, Sensing, Simulation and Controls (Volume 3) 26

5 Parameters

1: MX – INTEGER Input

On entry: mx, the number of state variables.

Constraint: MX � 1.

2: MY – INTEGER Input

On entry: my, the number of observed variables.

Constraint: MY � 1.

3: YðMYÞ – REAL (KIND=nag_wp) array Input

On entry: yt, the observed data at the current time point.

4: LXðMX;MXÞ – REAL (KIND=nag_wp) array Input

On entry: Lx, such that LxLT
x ¼ �x, i.e., the lower triangular part of a Cholesky decomposition of

the process noise covariance structure. Only the lower triangular part of LX is referenced.

If �x is time dependent, then the value supplied should be for time t.

5: LYðMY;MYÞ – REAL (KIND=nag_wp) array Input

On entry: Ly, such that LyLT
y ¼ �y, i.e., the lower triangular part of a Cholesky decomposition of

the observation noise covariance structure. Only the lower triangular part of LY is referenced.

If �y is time dependent, then the value supplied should be for time t.

6: F – SUBROUTINE, supplied by the user. External Procedure

The state function, F as described in (b).

The specification of F is:

SUBROUTINE F (MX, N, XT, FXT, IUSER, RUSER, INFO)

INTEGER MX, N, IUSER(*), INFO
REAL (KIND=nag_wp) XT(MX,N), FXT(MX,N), RUSER(*)

1: MX – INTEGER Input

On entry: mx, the number of state variables.

G13 – Time Series Analysis G13EKF

Mark 25 G13EKF.3

2: N – INTEGER Input

On entry: n, the number of sigma points.

3: XTðMX;NÞ – REAL (KIND=nag_wp) array Input

On entry: Xt, the sigma points generated in (a). For the jth sigma point, the value for the
ith parameter is held in XTði; jÞ, for i ¼ 1; 2; . . . ;mx and j ¼ 1; 2; . . . ; n.

4: FXTðMX;NÞ – REAL (KIND=nag_wp) array Output

On exit: F Xtð Þ.
For the jth sigma point the value for the ith parameter should be held in FXTði; jÞ, for
i ¼ 1; 2; . . . ;mx and j ¼ 1; 2; . . . ; n.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the parameters IUSER and RUSER as supplied to G13EKF. You are free
to use the arrays IUSER and RUSER to supply information to F as an alternative to
using COMMON global variables.

7: INFO – INTEGER Input/Output

On entry: INFO ¼ 0.

On exit: set INFO to a nonzero value if you wish G13EKF to terminate with
IFAIL ¼ 61.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program
from which G13EKF is called. Parameters denoted as Input must not be changed by this
procedure.

7: H – SUBROUTINE, supplied by the user. External Procedure

The measurement function, H as described in (e).

The specification of H is:

SUBROUTINE H (MX, MY, N, YT, HYT, IUSER, RUSER, INFO)

INTEGER MX, MY, N, IUSER(*), INFO
REAL (KIND=nag_wp) YT(MX,N), HYT(MY,N), RUSER(*)

1: MX – INTEGER Input

On entry: mx, the number of state variables.

2: MY – INTEGER Input

On entry: my, the number of observed variables.

3: N – INTEGER Input

On entry: n, the number of sigma points.

4: YTðMX;NÞ – REAL (KIND=nag_wp) array Input

On entry: Yt, the sigma points generated in (d). For the jth sigma point, the value for the
ith parameter is held in YTði; jÞ, for i ¼ 1; 2; . . . ;mx and j ¼ 1; 2; . . . ; n, where mx is
the number of state variables and n is the number of sigma points.

G13EKF NAG Library Manual

G13EKF.4 Mark 25

5: HYTðMY;NÞ – REAL (KIND=nag_wp) array Output

On exit: H Ytð Þ.
For the jth sigma point the value for the ith parameter should be held in HYTði; jÞ, for
i ¼ 1; 2; . . . ;my and j ¼ 1; 2; . . . ; n.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

H is called with the parameters IUSER and RUSER as supplied to G13EKF. You are
free to use the arrays IUSER and RUSER to supply information to H as an alternative to
using COMMON global variables.

8: INFO – INTEGER Input/Output

On entry: INFO ¼ 0.

On exit: set INFO to a nonzero value if you wish G13EKF to terminate with
IFAIL ¼ 71.

H must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program
from which G13EKF is called. Parameters denoted as Input must not be changed by this
procedure.

8: XðMXÞ – REAL (KIND=nag_wp) array Input/Output

On entry: x̂t�1 the state vector for the previous time point.

On exit: x̂t the updated state vector.

9: STðMX;MXÞ – REAL (KIND=nag_wp) array Input/Output

On entry: St, such that St�1S
T
t�1 ¼ Pt�1, i.e., the lower triangular part of a Cholesky

decomposition of the state covariance matrix at the previous time point. Only the lower
triangular part of ST is referenced.

On exit: St, the lower triangular part of a Cholesky factorization of the updated state covariance
matrix.

10: IUSERð�Þ – INTEGER array User Workspace
11: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by G13EKF, but are passed directly to F and H and may be used
to pass information to these routines as an alternative to using COMMON global variables.

12: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

G13 – Time Series Analysis G13EKF

Mark 25 G13EKF.5

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 11

On entry, MX ¼ valueh i.
Constraint: MX � 1.

IFAIL ¼ 21

On entry, MY ¼ valueh i.
Constraint: MY � 1.

IFAIL ¼ 61

User requested termination in F.

IFAIL ¼ 71

User requested termination in H.

IFAIL ¼ 301

A weight was negative and it was not possible to downdate the Cholesky factorization.

IFAIL ¼ 302

Unable to calculate the Kalman gain matrix.

IFAIL ¼ 303

Unable to calculate the Cholesky factorization of the updated state covariance matrix.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

G13EKF is not threaded by NAG in any implementation.

G13EKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

G13EKF NAG Library Manual

G13EKF.6 Mark 25

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

None.

10 Example

This example implements the following nonlinear state space model, with the state vector x and state
update function F given by:

mx ¼ 3

xtþ1 ¼ 	tþ1
tþ1 �tþ1

� �T

¼ F xtð Þ þ vt

¼ xt þ
cos �t � sin �t 0
sin �t cos �t 0
0 0 1

0
@

1
A 0:5r 0:5r

0 0
r=d �r=d

0
@

1
A �Rt

�Lt

� �
þ vt

where r and d are known constants and �Rt and �Lt are time-dependent knowns. The measurement
vector y and measurement function H is given by:

my ¼ 2
yt ¼ t; �tð ÞT

¼ H xtð Þ þ ut
¼ �� 	t cosA�
t sinA

�t �A

� �
þ ut

where A and � are known constants. The initial values, x0 and P0, are given by

x0 ¼
0
0
0

0
@

1
A; P0 ¼

0:1 0 0
0 0:1 0
0 0 0:1

0
@

1
A

and the Cholesky factorizations of the error covariance matrices, Lx and Lx by

Lx ¼
0:1 0 0
0 0:1 0
0 0 0:1

0
@

1
A ; Ly ¼ 0:01 0

0 0:01

� �

10.1 Program Text

! G13EKF Example Program Text
! Mark 25 Release. NAG Copyright 2014.

Module g13ekfe_mod

! G13EKF Example Program Module:
! User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f, h, read_problem_data

! .. Parameters ..
Integer, Parameter, Public :: mx = 3, my = 2, nin = 5, nout = 6

Contains
Subroutine f(mx,n,xt,fxt,iuser,ruser,info)

G13 – Time Series Analysis G13EKF

Mark 25 G13EKF.7

! .. Scalar Arguments ..
Integer, Intent (Inout) :: info
Integer, Intent (In) :: mx, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fxt(mx,n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: xt(mx,n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: d, phi_lt, phi_rt, r, t1, t3
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: cos, sin

! .. Executable Statements ..
Continue

r = ruser(3)
d = ruser(4)
phi_rt = ruser(5)
phi_lt = ruser(6)

t1 = 0.5_nag_wp*r*(phi_rt+phi_lt)
t3 = (r/d)*(phi_rt-phi_lt)

Do i = 1, n
fxt(1,i) = xt(1,i) + cos(xt(3,i))*t1
fxt(2,i) = xt(2,i) + sin(xt(3,i))*t1
fxt(3,i) = xt(3,i) + t3

End Do

! Set info nonzero to terminate execution for any reason.
info = 0

Return
End Subroutine f
Subroutine h(mx,my,n,yt,hyt,iuser,ruser,info)

! .. Use Statements ..
Use nag_library, Only: x01aaf

! .. Scalar Arguments ..
Integer, Intent (Inout) :: info
Integer, Intent (In) :: mx, my, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: hyt(my,n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: yt(mx,n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, delta, tmp
Integer :: i

! .. Intrinsic Procedures ..
Intrinsic :: cos, sin

! .. Executable Statements ..
Continue

delta = ruser(1)
a = ruser(2)

Do i = 1, n
hyt(1,i) = delta - yt(1,i)*cos(a) - yt(2,i)*sin(a)
hyt(2,i) = yt(3,i) - a

! Make sure that the theta is in the same range as the observed
! data, which in this case is [0, 2*pi)

If (hyt(2,i)<0.0_nag_wp) Then
hyt(2,i) = hyt(2,i) + 2*x01aaf(tmp)

End If
End Do

! Set info nonzero to terminate execution for any reason.
info = 0

G13EKF NAG Library Manual

G13EKF.8 Mark 25

Return
End Subroutine h
Subroutine read_problem_data(t,iuser,ruser,read_ok)

! Read in any data specific to the F and H subroutines

! .. Scalar Arguments ..
Integer, Intent (In) :: t
Logical, Intent (Out) :: read_ok

! .. Array Arguments ..
Real (Kind=nag_wp), Allocatable, Intent (Inout) :: ruser(:)
Integer, Allocatable, Intent (Inout) :: iuser(:)

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, d, delta, phi_lt, phi_rt, r
Integer :: tt

! .. Executable Statements ..
Continue

If (t==0) Then
! Allocate the arrays to hold the data

Allocate (ruser(6),iuser(0))

! Read in the data that is constant across all time points
Read (nin,*) r, d, delta, a

! Store the data in RUSER
ruser(1) = delta
ruser(2) = a
ruser(3) = r
ruser(4) = d

read_ok = .True.
Else

! Read in data for time point t
Read (nin,*) tt, phi_rt, phi_lt
If (tt/=t) Then

! Sanity check
Write (nout,99999) ’Expected to read in data for time point ’, t
Write (nout,99999) ’Data that was read in was for time point ’, tt

99999 Format (A,E22.15)
read_ok = .False.

Else
read_ok = .True.

End If

! Store the data in RUSER
ruser(5) = phi_rt
ruser(6) = phi_lt

End If
End Subroutine read_problem_data

End Module g13ekfe_mod

Program g13ekfe

! .. Use Statements ..
Use nag_library, Only: g13ekf, nag_wp
Use g13ekfe_mod, Only: f, h, mx, my, nin, nout, read_problem_data

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: i, ifail, ntime, t
Logical :: read_ok

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: lx(:,:), ly(:,:), ruser(:), &

st(:,:), x(:), y(:)
Integer, Allocatable :: iuser(:)

! .. Intrinsic Procedures ..
Intrinsic :: repeat

! .. Executable Statements ..
Write (nout,*) ’G13EKF Example Program Results’

G13 – Time Series Analysis G13EKF

Mark 25 G13EKF.9

Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Allocate arrays
Allocate (lx(mx,mx),ly(my,my),x(mx),st(mx,mx),y(my))

! Read in the cholesky factorisation of the covariance matrix for the
! process noise

Do i = 1, mx
Read (nin,*) lx(i,1:i)

End Do

! Read in the cholesky factorisation of the covariance matrix for the
! observation noise

Do i = 1, my
Read (nin,*) ly(i,1:i)

End Do

! Read in the initial state vector
Read (nin,*) x(1:mx)

! Read in the cholesky factorisation of the initial state covariance matrix
Do i = 1, mx

Read (nin,*) st(i,1:i)
End Do

! Read in the number of time points to run the system for
Read (nin,*) ntime

! Read in any problem specific data that is constant
Call read_problem_data(0,iuser,ruser,read_ok)
If (.Not. read_ok) Then

Go To 100
End If

! Title for first set of output
Write (nout,*) ’ Time ’, repeat(’ ’,(11*mx-16)/2), ’Estimate of State’
Write (nout,*) repeat(’-’,7+11*mx)

! Loop over each time point
Do t = 1, ntime

! Read in any problem specific data that is time dependent
Call read_problem_data(t,iuser,ruser,read_ok)
If (.Not. read_ok) Then

Go To 100
End If

! Read in the observed data for time t
Read (nin,*) y(1:my)

! Call Unscented Kalman Filter routine
ifail = 0
Call g13ekf(mx,my,y,lx,ly,f,h,x,st,iuser,ruser,ifail)

! Display the some of the current state estimate
Write (nout,99999) t, x(1:mx)

End Do

Write (nout,*)
Write (nout,*) ’Estimate of Cholesky Factorisation of the State’
Write (nout,*) ’Covariance Matrix at the Last Time Point’
Do i = 1, mx

Write (nout,99998) st(i,1:i)
End Do

G13EKF NAG Library Manual

G13EKF.10 Mark 25

100 Continue

99999 Format (1X,I3,4X,10(1X,F10.3))
99998 Format (10(1X,E10.3))

End Program g13ekfe

10.2 Program Data

G13EKF Example Program Data
0.1
0.0 0.1
0.0 0.0 0.1 :: End of LX
0.01
0.0 0.01 :: End of LY
0.0 0.0 0.0 :: Initial value for X
0.1
0.0 0.1
0.0 0.0 0.1 :: End of initial value for ST
15 :: Number of time points
3.0 4.0 5.814 0.464 :: r, d, Delta, A
1 0.4 0.1

5.262 5.923
2 0.4 0.1

4.347 5.783
3 0.4 0.1

3.818 6.181
4 0.4 0.1

2.706 0.085
5 0.4 0.1

1.878 0.442
6 0.4 0.1

0.684 0.836
7 0.4 0.1

0.752 1.300
8 0.4 0.1

0.464 1.700
9 0.4 0.1

0.597 1.781
10 0.4 0.1

0.842 2.040
11 0.4 0.1

1.412 2.286
12 0.4 0.1

1.527 2.820
13 0.4 0.1

2.399 3.147
14 0.4 0.1

2.661 3.569
15 0.4 0.1

3.327 3.659 :: t, phi_rt, phi_lt, Y = (delta_t, alpha_a)

10.3 Program Results

G13EKF Example Program Results

Time Estimate of State
--

1 0.664 -0.092 0.104
2 1.598 0.081 0.314
3 2.128 0.213 0.378
4 3.134 0.674 0.660
5 3.809 1.181 0.906
6 4.730 2.000 1.298
7 4.429 2.474 1.762
8 4.357 3.246 2.162
9 3.907 3.852 2.246

10 3.360 4.398 2.504
11 2.552 4.741 2.750
12 2.191 5.193 3.281
13 1.309 5.018 3.610

G13 – Time Series Analysis G13EKF

Mark 25 G13EKF.11

14 1.071 4.894 4.031
15 0.618 4.322 4.124

Estimate of Cholesky Factorisation of the State
Covariance Matrix at the Last Time Point
0.192E+00

-0.382E+00 0.222E-01
0.158E-05 0.223E-06 0.995E-02

The example described above can be thought of relating to the movement of a hypothetical robot. The
unknown state, x, is the position of the robot (with respect to a reference frame) and facing, with 	;
ð Þ
giving the x and y coordinates and � the angle (with respect to the x-axis) that the robot is facing. The
robot has two drive wheels, of radius r on an axle of length d. During time period t the right wheel is
believed to rotate at a velocity of �Rt and the left at a velocity of �Lt. In this example, these velocities
are fixed with �Rt ¼ 0:4 and �Lt ¼ 0:1. The state update function, F , calculates where the robot should
be at each time point, given its previous position. However, in reality, there is some random fluctuation
in the velocity of the wheels, for example, due to slippage. Therefore the actual position of the robot and
the position given by equation F will differ.

In the area that the robot is moving there is a single wall. The position of the wall is known and defined
by its distance, �, from the origin and its angle, A, from the x-axis. The robot has a sensor that is able
to measure y, with being the distance to the wall and � the angle to the wall. The measurement
function H gives the expected distance and angle to the wall if the robot’s position is given by xt.
Therefore the state space model allows the robot to incorporate the sensor information to update the
estimate of its position.

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

Example Program
Illustration of Position and Orientation

of a Hypothetical Robot

W
all

Position
Initial

Actual
Updated

G13EKF NAG Library Manual

G13EKF.12 (last) Mark 25

	G13EKF
	1 Purpose
	2 Specification
	3 Description
	3.1 Unscented Kalman Filter Algorithm
	3.2 Sigma Points

	4 References
	Haykin (2001)
	Julier (2002)
	Julier and Uhlmann (1997a)
	Julier and Uhlmann (1997b)

	5 Parameters
	MX
	MY
	Y
	LX
	LY
	F
	MX
	N
	XT
	FXT
	IUSER
	RUSER
	INFO

	H
	MX
	MY
	N
	YT
	HYT
	IUSER
	RUSER
	INFO

	X
	ST
	IUSER
	RUSER
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=11
	IFAIL=21
	IFAIL=61
	IFAIL=71
	IFAIL=301
	IFAIL=302
	IFAIL=303
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

