NAG Library Routine Document
 G13CBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G13CBF calculates the smoothed sample spectrum of a univariate time series using spectral smoothing by the trapezium frequency (Daniell) window.

2 Specification

```
SUBROUTINE G13CBF (NX, MTX, PX, MW, PW, L, KC, LG, XG, NG, STATS, IFAIL)
INTEGER NX, MTX, MW, L, KC, LG, NG, IFAIL
REAL (KIND=nag_wp) PX, PW, XG(KC), STATS(4)
```


3 Description

The supplied time series may be mean or trend corrected (by least squares), and tapered, the tapering factors being those of the split cosine bell:

$$
\begin{array}{ll}
\frac{1}{2}\left(1-\cos \left(\pi\left(t-\frac{1}{2}\right) / T\right)\right), & 1 \leq t \leq T \\
\frac{1}{2}\left(1-\cos \left(\pi\left(n-t+\frac{1}{2}\right) / T\right)\right), & n+1-T \leq t \leq n \\
1, & \text { otherwise, }
\end{array}
$$

where $T=\left[\frac{n p}{2}\right]$ and p is the tapering proportion.
The unsmoothed sample spectrum

$$
f^{*}(\omega)=\frac{1}{2 \pi}\left|\sum_{t=1}^{n} x_{t} \exp (i \omega t)\right|^{2}
$$

is then calculated for frequency values

$$
\omega_{k}=\frac{2 \pi k}{K}, \quad k=0,1, \ldots,[K / 2]
$$

where [] denotes the integer part.
The smoothed spectrum is returned as a subset of these frequencies for which k is a multiple of a chosen value r, i.e.,

$$
\omega_{r l}=\nu_{l}=\frac{2 \pi l}{L}, \quad l=0,1, \ldots,[L / 2]
$$

where $K=r \times L$. You will normally fix L first, then choose r so that K is sufficiently large to provide an adequate representation for the unsmoothed spectrum, i.e., $K \geq 2 \times n$. It is possible to take $L=K$, i.e., $r=1$.

The smoothing is defined by a trapezium window whose shape is supplied by the function

$$
\begin{array}{ll}
W(\alpha)=1, & |\alpha| \leq p \\
W(\alpha)=\frac{1-|\alpha|}{1-p}, & p<|\alpha| \leq 1
\end{array}
$$

the proportion p being supplied by you.

The width of the window is fixed as $2 \pi / M$ by you supplying M. A set of averaging weights are constructed:

$$
W_{k}=g \times W\left(\frac{\omega_{k} M}{\pi}\right), \quad 0 \leq \omega_{k} \leq \frac{\pi}{M}
$$

where g is a normalizing constant, and the smoothed spectrum obtained is

$$
\hat{f}\left(\nu_{l}\right)=\sum_{\substack{\left|\omega_{k}\right|<\frac{\pi}{M}}} W_{k} f^{*}\left(\nu_{l}+\omega_{k}\right)
$$

If no smoothing is required M should be set to n, in which case the values returned are $\hat{f}\left(\nu_{l}\right)=f^{*}\left(\nu_{l}\right)$. Otherwise, in order that the smoothing approximates well to an integration, it is essential that $K \gg M$, and preferable, but not essential, that K be a multiple of M. A choice of $L>M$ would normally be required to supply an adequate description of the smoothed spectrum. Typical choices of $L \simeq n$ and $K \simeq 4 n$ should be adequate for usual smoothing situations when $M<n / 5$.

The sampling distribution of $\hat{f}(\omega)$ is approximately that of a scaled χ_{d}^{2} variate, whose degrees of freedom d is provided by the routine, together with multiplying limits $m u, m l$ from which approximate 95% confidence intervals for the true spectrum $f(\omega)$ may be constructed as $[m l \times \hat{f}(\omega) m u \times \hat{f}(\omega)]$. Alternatively, $\log \hat{f}(\omega)$ may be returned, with additive limits.

The bandwidth b of the corresponding smoothing window in the frequency domain is also provided. Spectrum estimates separated by (angular) frequencies much greater than b may be assumed to be independent.

4 References

Bloomfield P (1976) Fourier Analysis of Time Series: An Introduction Wiley
Jenkins G M and Watts D G (1968) Spectral Analysis and its Applications Holden-Day

5 Parameters

1: NX - INTEGER
Input
On entry: n, the length of the time series.
Constraint: $\mathrm{NX} \geq 1$.
2: MTX - INTEGER
Input
On entry: whether the data are to be initially mean or trend corrected.
MTX $=0$
For no correction.
MTX $=1$
For mean correction.
MTX $=2$
For trend correction.
Constraint: $0 \leq \mathrm{MTX} \leq 2$.
3: $\quad \mathrm{PX}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$
Input
On entry: the proportion of the data (totalled over both ends) to be initially tapered by the split cosine bell taper. (A value of 0.0 implies no tapering.)
Constraint: $0.0 \leq \mathrm{PX} \leq 1.0$.

4: MW - INTEGER
Input
On entry: the value of M which determines the frequency width of the smoothing window as $2 \pi / M$. A value of n implies no smoothing is to be carried out.
Constraint: $1 \leq \mathrm{MW} \leq \mathrm{NX}$.
5: \quad PW - REAL (KIND=nag_wp)
Input
On entry: p, the shape parameter of the trapezium frequency window.
A value of 0.0 gives a triangular window, and a value of 1.0 a rectangular window.
If MW $=\mathrm{NX}$ (i.e., no smoothing is carried out), PW is not used.
Constraint: $0.0 \leq \mathrm{PW} \leq 1.0$.

6: L - INTEGER
Input
On entry: L, the frequency division of smoothed spectral estimates as $2 \pi / L$.
Constraints:
$\mathrm{L} \geq 1 ;$
L must be a factor of KC .

7: KC - INTEGER
Input
On entry: K, the order of the fast Fourier transform (FFT) used to calculate the spectral estimates. KC should be a multiple of small primes such as 2^{m} where m is the smallest integer such that $2^{m} \geq 2 n$, provided $m \leq 20$.

Constraints:

$K C \geq 2 \times N X ;$

KC must be a multiple of L. The largest prime factor of KC must not exceed 19, and the total number of prime factors of KC , counting repetitions, must not exceed 20 . These two restrictions are imposed by the internal FFT algorithm used.

8: LG - INTEGER
Input
On entry: indicates whether unlogged or logged spectral estimates and confidence limits are required.
$\mathrm{LG}=0$
For unlogged.
$\mathrm{LG} \neq 0$
For logged.
9: $\quad \mathrm{XG}(\mathrm{KC})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
On entry: the n data points.
On exit: contains the NG spectral estimates $\hat{f}\left(\omega_{i}\right)$, for $i=0,1, \ldots,[L / 2]$, in $\mathrm{XG}(1)$ to $\mathrm{XG}(\mathrm{NG})$ (logged if $\mathrm{LG} \neq 0$). The elements $\mathrm{XG}(i)$, for $i=\mathrm{NG}+1, \ldots, \mathrm{KC}$, contain 0.0.

10: NG - INTEGER
On exit: the number of spectral estimates, $[L / 2]+1$, in XG.

11: $\operatorname{STATS}(4)-\operatorname{REAL}\left(K I N D=n a g _w p\right)$ array
Output
On exit: four associated statistics. These are the degrees of freedom in $\operatorname{STATS}(1)$, the lower and upper 95% confidence limit factors in $\operatorname{STATS}(2)$ and $\operatorname{STATS}(3)$ respectively (logged if LG $\neq 0$), and the bandwidth in $\operatorname{STATS}(4)$.

12: IFAIL - INTEGER
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, because for this routine the values of the output parameters may be useful even if IFAIL $\neq 0$ on exit, the recommended value is -1 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Note: G13CBF may return useful information for one or more of the following detected errors or warnings.

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, NX <1,
or \quad MTX <0,
or \quad MTX >2,
or $\quad \mathrm{PX}<0.0$,
or $\quad \mathrm{PX}>1.0$,
or $\quad \mathrm{MW}<1$,
or $\quad \mathrm{MW}>\mathrm{NX}$,
or $\quad \mathrm{PW}<0.0$ and $\mathrm{MW} \neq \mathrm{NX}$,
or $\quad \mathrm{PW}>1.0$ and $\mathrm{MW} \neq \mathrm{NX}$,
or $\quad \mathrm{L}<1$.
IFAIL $=2$
On entry, KC $<2 \times \mathrm{NX}$,
or $\quad \mathrm{KC}$ is not a multiple of L ,
or $\quad \mathrm{KC}$ has a prime factor exceeding 19,
or $\quad \mathrm{KC}$ has more than 20 prime factors, counting repetitions.
IFAIL $=3$
This indicates that a serious error has occurred. Check all array subscripts and subroutine parameter lists in calls to G13CBF. Seek expert help.

IFAIL $=4$

One or more spectral estimates are negative. Unlogged spectral estimates are returned in XG, and the degrees of freedom, unlogged confidence limit factors and bandwidth in STATS.

IFAIL $=5$
The calculation of confidence limit factors has failed. This error will not normally occur. Spectral estimates (logged if requested) are returned in XG, and degrees of freedom and bandwidth in STATS.

IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

The FFT is a numerically stable process, and any errors introduced during the computation will normally be insignificant compared with uncertainty in the data.

8 Parallelism and Performance

Not applicable.

9 Further Comments

G13CBF carries out a FFT of length KC to calculate the sample spectrum. The time taken by the routine for this is approximately proportional to $\mathrm{KC} \times \log (\mathrm{KC})$ (but see Section 9 in C06PAF for further details).

10 Example

This example reads a time series of length 131. It then calls G13CBF to calculate the univariate spectrum and prints the logged spectrum together with 95% confidence limits.

10.1 Program Text

```
Program g13cbfe
    G13CBF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Use Statements ..
    Use nag_library, Only: g13cbf, nag_wp
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter : : nin = 5, nout \(=6\)
    .. Local Scalars ..
    Real (Kind=nag_wp) :: pw, px
    Integer : : i, ifail, kc, l, lg, lxg, mtx, mw, \&
    .. Local Arrays .
    Real (Kind=nag_wp) : : stats (4)
    Real (Kind=nag_wp), Allocatable : : xg(:)
    .. Intrinsic Procedures ..
    Intrinsic : : max
    .. Executable Statements ..
    Write (nout,*) 'G13CBF Example Program Results'
    Write (nout,*)
```

```
! Skip heading in data file
    Read (nin,*)
    Read in the problem size
    Read (nin,*) nx
    Read in smoothing parameters
    Read (nin,*) mtx, px, mw, l, kc, lg
    If (mw/=nx) Then
    Read (nin,*) pw
    End If
    lxg = max(kc,nx)
    Allocate (xg(lxg))
! Read in series
    Read (nin,*) xg(1:nx)
! Calculate smooth spectrum
    ifail = -1
    Call g13cbf(nx,mtx,px,mw,pw,l,kc,lg,xg,ng,stats,ifail)
    If (ifail/=0) Then
        If (ifail<4) Then
            Go To 100
    End If
    End If
    Display results
    If (mw==nx) Then
    Write (nout,*) 'No smoothing'
    Else
    Write (nout,99999) 'Frequency width of smoothing window = 1/', mw
    End If
    Write (nout,99998) 'Degrees of freedom =', stats(1), &
    , Bandwidth =', stats(4)
    Write (nout,*)
    Write (nout,99997) '95 percent confidence limits - Lower = ', &
    stats(2),' Upper = ', stats(3)
Write (nout,*)
Write (nout,*) &
    Spectrum Spectrum Spectrum Spectrum'
Write (nout,*) &
    estimate estimate estimate estimate'
    Write (nout,99996)(i,xg(i),i=1,ng)
    Write (nout,*)
100 Continue
9 9 9 9 9 ~ F o r m a t ~ ( I X , A , I O )
99998 Format (1X,A,F4.1,A,F7.4)
99997 Format (1X,A,F7.4,A,F7.4)
99996 Format (1X,I4,F10.4,I5,F10.4,I5,F10.4,I5,F10.4)
    End Program gl3cbfe
```


10.2 Program Data

G13CBF Example Program Data131: : NX								
10.230	10040	001						: : MTX, PX,MW,L,KC,LG
0.5								: : PW
11.500	9.890	8.728	8.400	8.230	8.365	8.383	8.243	
8.080	8.244	8.490	8.867	9.469	9.786	10.100	10.714	
11.320	11.900	12.390	12.095	11.800	12.400	11.833	12.200	
12.242	11.687	10.883	10.138	8.952	8.443	8.231	8.067	
7.871	7.962	8.217	8.689	8.989	9.450	9.883	10.150	
10.787	11.000	11.133	11.100	11.800	12.250	11.350	11.575	
11.800	11.100	10.300	9.725	9.025	8.048	7.294	7.070	
6.933	7.208	7.617	7.867	8.309	8.640	9.179	9.570	
10.063	10.803	11.547	11.550	11.800	12.200	12.400	12.367	
12.350	12.400	12.270	12.300	11.800	10.794	9.675	8.900	

| 8.208 | 8.087 | 7.763 | 7.917 | 8.030 | 8.212 | 8.669 | 9.175 | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 9.683 | 10.290 | 10.400 | 10.850 | 11.700 | 11.900 | 12.500 | 12.500 | |
| 12.800 | 12.950 | 13.050 | 12.800 | 12.800 | 12.800 | 12.600 | 11.917 | |
| 10.805 | 9.240 | 8.777 | 8.683 | 8.649 | 8.547 | 8.625 | 8.750 | |
| 9.110 | 9.392 | 9.787 | 10.340 | 10.500 | 11.233 | 12.033 | 12.200 | |
| 12.300 | 12.600 | 12.800 | 12.650 | 12.733 | 12.700 | 12.259 | 11.817 | |
| 10.767 | 9.825 | 9.150 | | | | | | $:$ End of XG |

10.3 Program Results

G13CBF Example Program Results
Frequency width of smoothing window $=1 / 30$
Degrees of freedom $=7.0 \quad$ Bandwidth $=0.1767$
95 percent confidence limits - Lower $=-0.8275$ Upper $=1.4213$

	Spectrum estimate						
1	-0.1776	2	-0.4561	3	-0.1784	4	1.9042
5	2.1094	6	1.7061	7	-0.7659	8	-1.4734
9	-1.5939	10	-2.1157	11	-2.9151	12	-2.7055
13	-2.8200	14	-3.4077	15	-3.8813	16	-3.6607
17	-4.0601	18	-4.4756	19	-4.2700	20	-4.3092
21	-4.5711	22	-4.8111	23	-4.5658	24	-4.7285
25	-5.4386	26	-5.5081	27	-5.2325	28	-5.0262
29	-4.4539	30	-4.4764	31	-4.9152	32	-5.8492
33	-5.5872	34	-4.9804	35	-4.8904	36	-5.2666
37	-5.7643	38	-5.8620	39	-5.5011	40	-5.7129
41	-6.3894	42	-6.4027	43	-6.1352	44	-6.5766
45	-7.3676	46	-7.1405	47	-6.1674	48	-5.8600
49	-6.1036	50	-6.2673	51	-6.4321		

