
NAG Library Chapter Introduction

G05 – Random Number Generators

Contents

1 Scope of the Chapter . 3

2 Background to the Problems . 3

2.1 Pseudorandom Numbers. 3

2.1.1 NAG Basic Generator . 3
2.1.2 Wichmann–Hill I Generator . 4
2.1.3 Wichmann–Hill II Generator . 4
2.1.4 Mersenne Twister Generator . 5
2.1.5 ACORN Generator . 6
2.1.6 L’Ecuyer MRG32k3a Combined Recursive Generator . 6

2.2 Quasi-random Numbers . 6

2.3 Scrambled Quasi-random Numbers . 7

2.4 Non-uniform Random Numbers . 7

2.5 Copulas . 8

2.6 Brownian Bridge. 8

2.6.1 Brownian Bridge Process . 8
2.6.2 Brownian Bridge Algorithm . 9
2.6.3 Bridge Construction Order and Quasi-random Sequences 10
2.6.4 Brownian Bridge and Stochastic Differential Equations 10

2.7 Random Fields . 11

2.8 Sampling . 12

2.9 Sampling Based Validation . 12

2.10 Other Random Structures. 13

2.11 Multiple Streams of Pseudorandom Numbers . 13

2.11.1 Multiple Streams via Different Initial Values (Seeds) . 13
2.11.2 Multiple Streams via Different Generators . 14
2.11.3 Multiple Streams via Skip-ahead . 14
2.11.4 Multiple Streams via Leap-frog. 14
2.11.5 Skip-ahead and Leap-frog for a Linear Congruential Generator (LCG):

An Example . 14
2.11.6 Skip-ahead and Leap-frog for the Mersenne Twister: An Example 15

3 Recommendations on Choice and Use of Available Routines 16

3.1 Pseudorandom Numbers. 16

3.1.1 Initialization . 16
3.1.2 Repeated initialization . 16
3.1.3 Choice of Base Generator . 16
3.1.4 Choice of Method for Generating Multiple Streams . 17
3.1.5 Copulas . 17

3.2 Quasi-random Numbers . 17

3.3 Brownian Bridge. 18

3.4 Random Fields . 18

3.5 Sampling . 18

G05 – Random Number Generators Introduction – G05

Mark 25 G05.1

4 Functionality Index. 19

5 Auxiliary Routines Associated with Library Routine Parameters 20

6 Routines Withdrawn or Scheduled for Withdrawal . 20

7 References. 22

Introduction – G05 NAG Library Manual

G05.2 Mark 25

1 Scope of the Chapter

This chapter is concerned with the generation of sequences of independent pseudorandom and quasi-
random numbers from various distributions, and models.

2 Background to the Problems

2.1 Pseudorandom Numbers

A sequence of pseudorandom numbers is a sequence of numbers generated in some systematic way such
that they are independent and statistically indistinguishable from a truly random sequence. A
pseudorandom number generator (PRNG) is a mathematical algorithm that, given an initial state,
produces a sequence of pseudorandom numbers. A PRNG has several advantages over a true random
number generator in that the generated sequence is repeatable, has known mathematical properties and
can be implemented without needing any specialist hardware. Many books on statistics and computer
science have good introductions to PRNGs, for example Knuth (1981) or Banks (1998).

PRNGs can be split into base generators, and distributional generators. Within the context of this
document a base generator is defined as a PRNG that produces a sequence (or stream) of variates (or
values) uniformly distributed over the interval 0; 1ð Þ. Depending on the algorithm being considered, this
interval may be open, closed or half-closed. A distribution generator is a routine that takes variates
generated from a base generator and transforms them into variates from a specified distribution, for
example a uniform, Gaussian (Normal) or gamma distribution.

The period (or cycle length) of a base generator is defined as the maximum number of values that can be
generated before the sequence starts to repeat. The initial state of the base generator is often called the
seed.

There are six base generators currently available in the NAG Library, these are; a basic linear
congruential generator (LCG) (referred to as the NAG basic generator) (see Knuth (1981)), two sets of
Wichmann–Hill generators (see Maclaren (1989) and Wichmann and Hill (2006)), the Mersenne Twister
(see Matsumoto and Nishimura (1998)), the ACORN generator (see Wikramaratna (1989)) and L’Ecuyer
generator (see L’Ecuyer and Simard (2002)).

2.1.1 NAG Basic Generator

The NAG basic generator is a linear congruential generator (LCG) and, like all linear congruential
generators, has the form:

xi ¼ a1xi�1 mod m1;
ui ¼ xi

m1
;

where the ui, for i ¼ 1; 2; . . ., form the required sequence.

The NAG basic generator uses a1 ¼ 1313 and m1 ¼ 259, which gives a period of approximately 257.

This generator has been part of the NAG Library since Mark 6 and as such has been widely used. It
suffers from no known problems, other than those due to the lattice structure inherent in all linear
congruential generators, and, even though the period is relatively short compared to many of the newer
generators, it is sufficiently large for many practical problems.

The performance of the NAG basic generator has been analysed by the Spectral Test, see Section 3.3.4
of Knuth (1981), yielding the following results in the notation of Knuth (1981).

G05 – Random Number Generators Introduction – G05

Mark 25 G05.3

n �n Upper bound for �n
2 3:44� 108 4:08� 108

3 4:29� 105 5:88� 105

4 1:72� 104 2:32� 104

5 1:92� 103 3:33� 103

6 593 939
7 198 380
8 108 197
9 67 120

The right-hand column gives an upper bound for the values of �n attainable by any multiplicative
congruential generator working modulo 259.

An informal interpretation of the quantities �n is that consecutive n-tuples are statistically uncorrelated to
an accuracy of 1=�n. This is a theoretical result; in practice the degree of randomness is usually much
greater than the above figures might support. More details are given in Knuth (1981), and in the
references cited therein.

Note that the achievable accuracy drops rapidly as the number of dimensions increases. This is a
property of all multiplicative congruential generators and is the reason why very long periods are needed
even for samples of only a few random numbers.

2.1.2 Wichmann–Hill I Generator

This series of Wichmann–Hill base generators (see Maclaren (1989)) use a combination of four linear
congruential generators and has the form:

wi ¼ a1wi�1 mod m1

xi ¼ a2xi�1 mod m2

yi ¼ a3yi�1 mod m3

zi ¼ a4zi�1 mod m4

ui ¼ wi
m1
þ xi

m2
þ yi

m3
þ zi

m4

� �
mod 1;

ð1Þ

where the ui, for i ¼ 1; 2; . . ., form the required sequence. The NAG Library implementation includes
273 sets of parameters, aj ;mj , for j ¼ 1; 2; 3; 4, to choose from.

The constants ai are in the range 112 to 127 and the constants mj are prime numbers in the range

16718909 to 16776971, which are close to 224 ¼ 16777216. These constants have been chosen so that
each of the resulting 273 generators are essentially independent, all calculations can be carried out in 32-
bit integer arithmetic and the generators give good results with the spectral test, see Knuth (1981) and
Maclaren (1989). The period of each of these generators would be at least 292 if it were not for common
factors between m1 � 1ð Þ, m2 � 1ð Þ, m3 � 1ð Þ and m4 � 1ð Þ. However, each generator should still have
a period of at least 280. Further discussion of the properties of these generators is given in Maclaren
(1989).

2.1.3 Wichmann–Hill II Generator

This Wichmann–Hill base generator (see Wichmann and Hill (2006)) is of the same form as that
described in Section 2.1.2, i.e., a combination of four linear congruential generators. In this case
a1 ¼ 11600, m1 ¼ 2147483579, a2 ¼ 47003, m2 ¼ 2147483543, a3 ¼ 23000, m3 ¼ 2147483423,
a4 ¼ 33000, m4 ¼ 2147483123.

Unlike in the original Wichmann–Hill generator, these values are too large to carry out the calculations
detailed in (1) using 32-bit integer arithmetic, however, if

wi ¼ 11600endgroupwi�1 mod 2147483579

then setting

Wi ¼ 11600 wi�1 mod 185127ð Þ � 10379 wi�1=185127ð Þ

gives

Introduction – G05 NAG Library Manual

G05.4 Mark 25

wi ¼ Wi if Wi � 0
2147483579þWi otherwise

�

and Wi can be calculated in 32-bit integer arithmetic. Similar expressions exist for xi, yi and zi. The
period of this generator is approximately 2121.

Further details of implementing this algorithm and its properties are given in Wichmann and Hill (2006).
This paper also gives some useful guidelines on testing PRNGs.

2.1.4 Mersenne Twister Generator

The Mersenne Twister (see Matsumoto and Nishimura (1998)) is a twisted generalized feedback shift
register generator. The algorithm underlying the Mersenne Twister is as follows:

(i) Set some arbitrary initial values x1; x2; . . . ; xr, each consisting of w bits.

(ii) Letting

A ¼ 0 Iw�1

aw aw�1 � � � a1

� �
;

where Iw�1 is the w� 1ð Þ � w� 1ð Þ identity matrix and each of the ai; i ¼ 1 to w take a value of
either 0 or 1 (i.e., they can be represented as bits). Define

xiþr ¼ xiþs � x
!: lþ1ð Þð Þ
i jx l:1ð Þ

iþ1

� �
A

� �
;

where x !: lþ1ð Þð Þ
i jx l:1ð Þ

iþ1 indicates the concatenation of the most significant (upper) w� l bits of xi and
the least significant (lower) l bits of xiþ1.

(iii) Perform the following operations sequentially:

z ¼ xiþr � xiþr � t1ð Þ
z ¼ z� z� t2ð Þ AND m1ð Þ
z ¼ z� z� t3ð Þ AND m2ð Þ
z ¼ z� z� t4ð Þ
uiþr ¼ z= 2w � 1ð Þ;

where t1, t2, t3 and t4 are integers and m1 and m2 are bit-masks and ‘� t’ and ‘� t’ represent a t
bit shift right and left respectively, � is bit-wise exclusively or (xor) operation and ‘AND’ is a bit-
wise and operation.

The uiþr, for i ¼ 1; 2; . . ., form the required sequence. The supplied implementation of the Mersenne
Twister uses the following values for the algorithmic constants:

w ¼ 32
a ¼ 0x9908b0df
l ¼ 31
r ¼ 624
s ¼ 397
t1 ¼ 11
t2 ¼ 7
t3 ¼ 15
t4 ¼ 18
m1 ¼ 0x9d2c5680
m2 ¼ 0xefc60000

where the notation 0xDD. . . indicates the bit pattern of the integer whose hexadecimal representation is
DD. . ..

This algorithm has a period length of approximately 219;937 � 1 and has been shown to be uniformly
distributed in 623 dimensions (see Matsumoto and Nishimura (1998)).

G05 – Random Number Generators Introduction – G05

Mark 25 G05.5

2.1.5 ACORN Generator

The ACORN generator is a special case of a multiple recursive generator (see Wikramaratna (1989) and
Wikramaratna (2007)). The algorithm underlying ACORN is as follows:

(i) Choose an integer value k � 1.

(ii) Choose an integer value M, and an integer seed Y 0ð Þ
0 , such that 0 < Y

0ð Þ
0 < M and Y 0ð Þ

0 and M are
relatively prime.

(iii) Choose an arbitrary set of k initial integer values, Y
1ð Þ

0 ; Y
2ð Þ

0 ; . . . ; Y
kð Þ

0 , such that 0 	 Y mð Þ
0 < M, for

all m ¼ 1; 2; . . . ; k.

(iv) Perform the following sequentially:

Y
mð Þ

i ¼ Y
m�1ð Þ

i þ Y mð Þ
i�1

� �
mod M

for m ¼ 1; 2; . . . ; k.

(v) Set ui ¼ Y kð Þ
i =M.

The ui, for i ¼ 1; 2; . . ., then form a pseudorandom sequence, with ui 2 0; 1½ Þ, for all i.

Although you can choose any value for k, M, Y
0ð Þ

0 and the Y
mð Þ

0 , within the constraints mentioned in (i)

to (iii) above, it is recommended that k � 10, M is chosen to be a large power of two with M � 260 and

Y
0ð Þ

0 is chosen to be odd.

The period of the ACORN generator, with the modulus M equal to a power of two, and an odd value for

Y
0ð Þ

0 has been shown to be an integer multiple of M (see Wikramaratna (1992)). Therefore, increasing M
will give a series with a longer period.

2.1.6 L’Ecuyer MRG32k3a Combined Recursive Generator

The base generator L’Ecuyer MRG32k3a (see L’Ecuyer and Simard (2002)) combines two multiple
recursive generators:

xi ¼ a11xi�1 þ a12xi�2 þ a13xi�3ð Þ mod m1

yi ¼ a21yi�1 þ a22yi�2 þ a23yi�3ð Þ mod m2

zi ¼ xi � yið Þ mod m1

ui ¼ zi þ 1ð Þ=d

w h e r e a11 ¼ 0, a12 ¼ 1403580, a13 ¼ �810728, m1 ¼ 232 � 209, a21 ¼ 527612, a22 ¼ 0,
a23 ¼ �1370589, m2 ¼ 232 � 22853, and ui; i ¼ 1; 2; . . . form the required sequence. If d ¼ m1 then
ui 2 0; 1ð
 else if d ¼ m1 þ 1 then ui 2 0; 1ð Þ. Combining the two multiple recursive generators (MRG)
results in sequences with better statistical properties in high dimensions and longer periods compared
with those generated from a single MRG. The combined generator described above has a period length
of approximately 2191.

2.2 Quasi-random Numbers

Low discrepancy (quasi-random) sequences are used in numerical integration, simulation and
optimization. Like pseudorandom numbers they are uniformly distributed but they are not statistically
independent, rather they are designed to give more even distribution in multidimensional space
(uniformity). Therefore they are often more efficient than pseudorandom numbers in multidimensional
Monte–Carlo methods.

The quasi-random number generators implemented in this chapter generate a set of points x1; x2; . . . ; xN

with high uniformity in the S-dimensional unit cube IS ¼ 0; 1½
S . One measure of the uniformity is the
discrepancy which is defined as follows:

Given a set of points x1; x2; . . . ; xN 2 IS and a subset G � IS , define the counting function
SN Gð Þ as the number of points xi 2 G. For each x ¼ x1; x2; . . . ; xSð Þ 2 IS , let Gx be the
rectangular S-dimensional region

Introduction – G05 NAG Library Manual

G05.6 Mark 25

Gx ¼ 0; x1½ Þ � 0; x2½ Þ � � � � � 0; xS½ Þ

with volume x1; x2; . . . ; xS . Then the discrepancy of the points x1; x2; . . . ; xN is

D�N x1; x2; . . . ; xN
� �

¼ sup
x2IS

SN Gxð Þ �N
XS
k¼1

xk

					
					:

The discrepancy of the first N terms of such a sequence has the form

D�N x1; x2; . . . ; xN
� �

	 CS logNð ÞS þO logNð ÞS�1
� �

for all N � 2:

The principal aim in the construction of low-discrepancy sequences is to find sequences of points
in IS with a bound of this form where the constant CS is as small as possible.

Three types of low-discrepancy sequences are supplied in this library, these are due to Sobol, Faure and
Niederreiter. Two sets of Sobol sequences are supplied, the first is based on work of Joe and Kuo (2008)
and the second on the work of Bratley and Fox (1988). More information on quasi-random number
generation and the Sobol, Faure and Niederreiter sequences in particular can be found in Bratley and Fox
(1988) and Fox (1986).

The efficiency of a simulation exercise may often be increased by the use of variance reduction methods
(see Morgan (1984)). It is also worth considering whether a simulation is the best approach to solving
the problem. For example, low-dimensional integrals are usually more efficiently calculated by routines
in Chapter D01 rather than by Monte–Carlo integration.

2.3 Scrambled Quasi-random Numbers

Scrambled quasi-random sequences are an extension of standard quasi-random sequences that attempt to
eliminate the bias inherent in a quasi-random sequence whilst retaining the low-discrepancy properties.
The use of a scrambled sequence allows error estimation of Monte–Carlo results by performing a
number of iterates and computing the variance of the results.

This implementation of scrambled quasi-random sequences is based on TOMS algorithm 823 and details
can be found in the accompanying paper, Hong and Hickernell (2003). Three methods of scrambling are
supplied; the first a restricted form of Owen’s scrambling (Owen (1995)), the second based on the
method of Faure and Tezuka (2000) and the last method combines the first two.

Scrambled versions of both Sobol sequences and the Niederreiter sequence can be obtained.

2.4 Non-uniform Random Numbers

Random numbers from other distributions may be obtained from the uniform random numbers by the use
of transformations and rejection techniques, and for discrete distributions, by table based methods.

(a) Transformation Methods

For a continuous random variable, if the cumulative distribution function (CDF) is F xð Þ then for a
uniform 0; 1ð Þ random variate u, y ¼ F�1 uð Þ will have CDF F xð Þ. This method is only efficient in a
few simple cases such as the exponential distribution with mean �, in which case
F�1 uð Þ ¼ ��log uð Þ. Other transformations are based on the joint distribution of several random
variables. In the bivariate case, if v and w are random variates there may be a function g such that
y ¼ g v; wð Þ has the required distribution; for example, the Student’s t-distribution with n degrees of

freedom in which v has a Normal distribution, w has a gamma distribution and g v; wð Þ ¼ v
ffiffiffiffiffiffiffiffiffi
n=w

p
.

(b) Rejection Methods

Rejection techniques are based on the ability to easily generate random numbers from a distribution
(called the envelope) similar to the distribution required. The value from the envelope distribution is
then accepted as a random number from the required distribution with a certain probability;
otherwise, it is rejected and a new number is generated from the envelope distribution.

G05 – Random Number Generators Introduction – G05

Mark 25 G05.7

(c) Table Search Methods

For discrete distributions, if the cumulative probabilities, Pi ¼ Prob x 	 ið Þ, are stored in a table
then, given u from a uniform 0; 1ð Þ distribution, the table is searched for i such that Pi�1 < u 	 Pi.
The returned value i will have the required distribution. The table searching can be made faster by
means of an index, see Ripley (1987). The effort required to set up the table and its index may be
considerable, but the methods are very efficient when many values are needed from the same
distribution.

2.5 Copulas

A copula is a function that links the univariate marginal distributions with their multivariate distribution.
Sklar’s theorem (see Sklar (1973)) states that if f is an m-dimensional distribution function with
continuous margins f1; f2; . . . ; fm, then f has a unique copula representation, c, such that

f x1; x2; . . . ; xmð Þ ¼ c f1 x1ð Þ; f2 x2ð Þ; . . . ; fm xmð Þð Þ
The copula, c, is a multivariate uniform distribution whose dependence structure is defined by the
dependence structure of the multivariate distribution f , with

c u1; u2; . . . ; umð Þ ¼ f f�1
1 u1ð Þ; f�1

2 u2ð Þ; . . . ; f�1
m umð Þ

� �
where ui 2 0; 1½
. This relationship can be used to simulate variates from distributions defined by the
dependence structure of one distribution and each of the marginal distributions given by another. For
additional information see Nelsen (1998) or Boye (Unpublished manuscript) and the references therein.

2.6 Brownian Bridge

2.6.1 Brownian Bridge Process

Fix two times t0 < T and let W ¼ Wtð Þ0	t	T�t0 be a standard d-dimensional Wiener process on the
interval 0; T � t0½
. Recall that the terms Wiener process and Brownian motion are often used
interchangeably.

A standard d-dimensional Brownian bridge B ¼ Btð Þt0	t	T on t0; T½
 is defined (see Revuz and Yor
(1999)) as

Bt ¼Wt�t0 �
t� t0
T � t0

WT�t0 :

The process is continuous, starts at zero at time t0 and ends at zero at time T . It is Gaussian, has zero
mean and has a covariance structure given by

E BsB
T
t

� �
¼ s� t0ð Þ T � tð Þ

T � t0
Id

for any s 	 t in t0; T½
 where Id is the d-dimensional identity matrix. The Brownian bridge is often
called a non-free or ‘pinned’ Wiener process since it is forced to be 0 at time T , but is otherwise very
similar to a standard Wiener process.

We can generalize this construction as follows. Fix points x; w 2 R
d, let � be a d� d covariance matrix

and choose any d� d matrix C such that CCT ¼ �. The generalized d-dimensional Brownian bridge
X ¼ Xtð Þt0	t	T is defined by setting

Xt ¼
t� t0ð Þwþ T � tð Þx

T � t0
þ CBt ¼

t� t0ð Þwþ T � tð Þx
T � t0

þ CWt�t0 �
t� t0ð Þ
T � t0

CWT�t0

for all t 2 t0; T½
. The process X is continuous, starts at x at time t0 and ends at w at time T . It has mean
t� t0ð Þwþ T � tð Þxð Þ= T � t0ð Þ and covariance structure

E Xs � EXsð Þ Xt � EXtð ÞT ¼ E CBsB
T
t C

T
� �

¼ s� t0ð Þ T � tð Þ
T � t0

�

for all s 	 t in t0; T½
. This is a non-free Wiener process since it is forced to be equal to w at time T .
However if we set w ¼ xþ CWT�t0 , then X simplifies to

Introduction – G05 NAG Library Manual

G05.8 Mark 25

Xt ¼ xþ CWt�t0

for all t 2 t0; T½
 which is nothing other than a d-dimensional Wiener process with covariance given by
�.

Figure 1
Two sample paths for a two-dimensional free Wiener process

Figure 1 shows two sample paths for a two-dimensional free Wiener process X ¼ X1
t ; X

2
t

� �
0	t	2

. The

correlation coefficient between the one-dimensional processes X1 and X2 at any time is � ¼ 0:80. Note
that the red and green paths in each figure are uncorrelated, however it is fairly evident that the two red
paths are correlated, and that the two green paths are correlated (when one path increases so does the
other, and vice versa).

Figure 2
Two sample paths for a two-dimensional non-free Wiener process. The process starts at 0; 0ð Þ and ends

at 1;�1ð Þ
Figure 2 shows two sample paths for a two-dimensional non-free Wiener process. The process starts at
0; 0ð Þ and ends at 1;�1ð Þ. The correlation coefficient between the one-dimensional processes is again
� ¼ 0:80. The red and green paths in each figure are uncorrelated, while the two red paths tend to
increase and decrease together, as do the two green paths. Both Figure 1 and Figure 2 were constructed
using G05XBF.

2.6.2 Brownian Bridge Algorithm

The ideas above can also be used to construct sample paths of a free or non-free Wiener process (recall
that a non-free Wiener process is the Brownian bridge process outlined above). Fix two times t0 < T and
let tið Þ1	i	N be any set of time points satisfying t0 < t1 < t2 < � � � < tN < T . Let Xtið Þ1	i	N denote a
d-dimensional (free or non-free) Wiener sample path at these times. These values can be generated by
the so-called Brownian bridge algorithm (see Glasserman (2004)) which works as follows. From any two
known points Xti at time ti and Xtk at time tk with ti < tk, a new point Xtj can be interpolated at any

G05 – Random Number Generators Introduction – G05

Mark 25 G05.9

time tj 2 ti; tkð Þ by setting

Xtj ¼
Xti tk � tj
� �

þXtk tj � ti
� �

tk � ti
þ CZ

ffi
tk � tj
� �

tj � ti
� �

tk � tið Þ

s
ð2Þ

where Z is a d-dimensional standard Normal random variable and C is any d� d matrix such that CCT

is the desired covariance structure for the (free or non-free) Wiener process X. Clearly this algorithm is
iterative in nature. All that is needed to complete the specification is to fix the start point Xt0 and end
point XT , and to specify how successive interpolation times tj are chosen. For X to behave like a usual

(free) Wiener process we should set Xt0 equal to some value x 2 R
d and then set XT ¼ xþ C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T � t0
p

Z
where Z is any d-dimensional standard Normal random variable. However when it comes to deciding
how the successive interpolation times tj should be chosen, there is virtually no restriction. Any method
of choosing which tj 2 ti; tkð Þ to interpolate next is equally valid, provided ti is the nearest known point
to the left of tj and tk is the nearest known point to the right of tj. In other words, the interpolation
interval ti; tkð Þ must not contain any other known points, otherwise the covariance structure of the
process will be incorrect.

The order in which the successive interpolation times tj are chosen is called the bridge construction
order. Since all construction orders will produce a correct process, the question arises whether one
construction order should be preferred over another. When the Z values are drawn from a pseudorandom
generator, the answer is typically no. However the bridge algorithm is frequently used with quasi-random
numbers, and in this case the bridge construction order can be important.

2.6.3 Bridge Construction Order and Quasi-random Sequences

Consider the one-dimensional case of a free Wiener process where d ¼ C ¼ 1. The Brownian bridge is
frequently combined with low-discrepancy (quasi-random) sequences to perform quasi-Monte–Carlo
integration. Quasi-random points Z1; Z2; Z3; . . . are generated from the standard Normal distribution,
where each quasi-random point Zi ¼ Zi

1; Z
i
2; � � � ; Zi

D

� �
consists of D one-dimensional values. The

process X starts at Xt0 ¼ x which is known. There remain N þ 1 time points at which the bridge is to
be computed, namely Xtið Þ1	i	N and XT (recall we are considering a free Wiener process). In this case
D is set equal to N þ 1, so that N þ 1 dimensional quasi-random points are generated. A single quasi-
random point is used to construct one Wiener sample path.

The question is how to use the dimension values of each N þ 1 dimensional quasi-random point. Often
the ‘lower’ dimension values (Zi

1; Z
i
2, etc.) display better uniformity properties than the ‘higher’

dimension values (Zi
Nþ1; Z

i
N , etc.) so that the ‘lower’ dimension values should be used to construct the

most important sections of the sample path. For example, consider a model which is particularly
sensitive to the behaviour of the underlying process at time 3. When constructing the sample paths, one
would therefore ensure that time 3 was one of the interpolation points of the bridge, and that a ‘lower’
dimension value was used in (2) to construct the corresponding bridge point X3. Indeed, one would most
likely also ensure that time X3 was one of the first bridge points that was constructed: ‘lower’ dimension
values would be used to construct both the left and right bridge points used in (2) to interpolate X3, so
that the distribution of X3 benefits as much as possible from the uniformity properties of the quasi-
random sequence. For further discussions in this regard we refer to Glasserman (2004). These remarks
extend readily to the case of a non-free Wiener process.

2.6.4 Brownian Bridge and Stochastic Differential Equations

The Brownian bridge algorithm, especially when combined with quasi-random variates, is frequently
used to obtain numerical solutions to stochastic differential equations (SDEs) driven by (free or non-free)
Wiener processes. The quasi-random variates produce a family of Wiener sample paths which cover the
space of all Wiener sample paths fairly evenly. This is analogous to the way in which a two-dimensional

quasi-random sequence covers the unit square 0; 1½
2 evenly. When solving SDEs one is typically
interested in the increments of the driving Wiener process between two time points, rather than the value
of the process at a particular time point. Section 3.3 contains details on which routines can be used to
obtain such Wiener increments.

Introduction – G05 NAG Library Manual

G05.10 Mark 25

2.7 Random Fields

A random field is a stochastic process, taking values in a Euclidean space, and defined over a parameter
space of dimensionality at least one. They are often used to simulate some physical space-dependent
parameter, such as the permeability of rock, which cannot be measured at every point in the space. The
simulated values can then be used to model other dependent quantities, for example, underground flow
of water, often through the use of partial differential equations (PDEs).

A d-dimensional random field Z xð Þ is a function which is random at every point x 2 Dð Þ for some
domain D � R

d, so Z xð Þ is a random variable for each x. The random field has a mean function
� xð Þ ¼ E Z xð Þ½
 a n d a s y m m e t r i c p o s i t i v e s e m i d e fi n i t e c o v a r i a n c e f u n c t i o n
C x; yð Þ ¼ E Z xð Þ � � xð Þð Þ Z yð Þ � � yð Þð Þ½
.

A random field, Z xð Þ, is a Gaussian random field if, for any choice of n 2 N and x1; . . . ; xn 2 R
d, the

random vector Z x1ð Þ; . . . ; Z xnð Þ½
T follows a multivariate Gaussian distribution.

A Gaussian random field Z xð Þ is stationary if � xð Þ is constant for all x 2 R and
C x; yð Þ ¼ C xþ a; yþ að Þ for all x; y; a 2 R

d and hence we can express the covariance function
C x; yð Þ as a function � of one variable: C x; yð Þ ¼ � x� yð Þ. � is known as a variogram (or more
correctly, a semivariogram) and includes the multiplicative factor �2 representing the variance such that
� 0ð Þ ¼ �2. There are a number of commonly used variograms, including:

Symmetric stable variogram

� xð Þ ¼ �2 exp � x0ð Þ�
� �

:

Cauchy variogram

� xð Þ ¼ �2 1þ x0ð Þ2
� ���

:

Differential variogram with compact support

� xð Þ ¼ �2 1þ 8x0 þ 25 x0ð Þ2 þ 32 x0ð Þ3
� �

1� x0ð Þ8; x0 < 1;

0; x0 � 1:

(

Exponential variogram

� xð Þ ¼ �2 exp �x0ð Þ:
Gaussian variogram

� xð Þ ¼ �2 exp � x0ð Þ2
� �

:

Nugget variogram

� xð Þ ¼ �2; x ¼ 0;
0; x 6¼ 0:

�

Spherical variogram

� xð Þ ¼ �2 1� 1:5x0 þ 0:5 x0ð Þ3
� �

; x0 < 1;

0; x0 � 1:

(

Bessel variogram

� xð Þ ¼ �22�� � þ 1ð ÞJ� x0ð Þ
x0ð Þ� ;

Hole effect variogram

� xð Þ ¼ �2sin x0ð Þ
x0

:

G05 – Random Number Generators Introduction – G05

Mark 25 G05.11

Whittle–Matérn variogram

� xð Þ ¼ �221�� x0ð Þ�K� x
0ð Þ

� �ð Þ :

Continuously parameterised variogram with compact support

� xð Þ ¼ �221�� x0ð Þ�K� x
0ð Þ

� �ð Þ 1þ 8x00 þ 25 x00ð Þ2 þ 32 x00ð Þ3
� �

1� x00ð Þ8; x00 < 1;

0; x00 � 1:

(

Generalized hyperbolic distribution variogram

� xð Þ ¼ �2
	2 þ x0ð Þ2
� �

2

	
K
 �	ð Þ
K
 � 	2 þ x0ð Þ2

� �1
2

� �
:

Cosine variogram

� xð Þ ¼ �2 cos x0ð Þ:
Where x0 is a scaled norm of x.

2.8 Sampling

The term sampling can have a number of different meanings. Here we are using it to mean randomly
selecting one or more observations or records from a particular dataset. Sampling can be performed in
one of two ways:

With replacement:
where each observation in the original dataset can appear multiple times in the sample. The
sample can therefore be larger than the original dataset.

Without replacement:
where each observation in the original dataset can appear at most once in the sample. The
sample is therefore no larger than the original dataset.

Each of these sampling methods can be further divided into two categories:

With equal weights:
where each observation in the original dataset has the same probability of appearing in the
sample as every other observation.

With unequal weights:
where the probability of an observation from the original dataset appearing in the sample is
proportional to the weight assigned to that observation.

The need to sample from a dataset appears in many areas. For example, it forms the basis for:
bootstrapping (sampling with replacement, usually using equal weights); cross-validation (sampling
without replacement, using equal weights); importance sampling (sampling with replacement, using
unequal weights); randomization of experimental units in designed experiments or reducing the size of
large databases (sampling with replacement with either equal or unequal weights).

Rather than drawing a sample from the whole dataset it is sometimes desirable to take samples from
different strata or subpopulations within that dataset, referred to as stratified sampling. Within each
stratum one or more of the above sampling methods may be adopted.

2.9 Sampling Based Validation

Let Yo;Xoð Þ denote a dataset of observed values from a known population, where Yo is a matrix of one
or more dependent or response variables and Xo a matrix of one more more independent variables or
covariates. Let M denote a model described in terms � a vector of one or more unknown parameters.
The purpose of model M is to describe the behaviour of the dependent variables in terms of the
independent variables. In order to do this the parameter estimates must first be estimated and then how
well the models fits, that is, how well it describes the dependent variables, assessed.

Introduction – G05 NAG Library Manual

G05.12 Mark 25

An example of such a model would be a simple linear regression as described in Section 2.3 in the G02
Chapter Introduction. The simple linear regression has two parameters, an intercept, �0 and slope, �1 and
the observed dataset consists of the dependent variable y and the single independent variable x. The
parameter estimates are usually obtained via least squares.

Given a set of parameter estimates and a matrix of independent variables one way of assessing how well
a model fits is to use the model to predict the values of the dependent variable and compare these
predictions to the observed values. Ideally two datasets will be involved, a training dataset, Yt;Xtð Þ,
used to estimate the model parameters and a validation dataset, Yv;Xvð Þ, used for the prediction and
comparison. These two datasets should be drawn independently from the same population. However, in
practice, this is often not possible either because a second dataset can not be drawn from the same
population or because the value of the dependent variables are unknowable (for example the dataset in
question is a time series and the event of interest has not yet happened). Rather than use the same dataset
as both the training and validation dataset, which leads to overfitting and hence an over estimation of
how well the model fits, a sampling based validation method can be used.

In K-fold cross-validation the original dataset is randomly divided into K equally sized folds (or
groups). The model fitting and assessment process is performed using a validation dataset consisting of
those observations in the kth group and a training dataset consisting of all observations not in the kth
group. This is repeated K times, with k ¼ 1; 2; . . . ; K, and the results combined. Repeated random sub-
sampling validation is similar, but rather than systematically dividing the original dataset into a training
and validation dataset, whether an observation resides in a given dataset is chosen randomly each time
the model fitting and assessment process is repeated.

2.10 Other Random Structures

In addition to random numbers from various distributions, random compound structures can be
generated. These include random time series and random matrices.

2.11 Multiple Streams of Pseudorandom Numbers

It is often advantageous to be able to generate variates from multiple, independent, streams (or
sequences) of random variates. For example when running a simulation in parallel on several processors.
There are four ways of generating multiple streams using the routines available in this chapter:

(i) using different initial values (seeds);

(ii) using different generators;

(iii) skip ahead (also called block-splitting);

(iv) leap-frogging.

2.11.1 Multiple Streams via Different Initial Values (Seeds)

A different sequence of variates can be generated from the same base generator by initializing the
generator using a different set of seeds. The statistical properties of the base generators are only
guaranteed within, not between sequences. For example, two sequences generated from two different
starting points may overlap if these initial values are not far enough apart. The potential for overlapping
sequences is reduced if the period of the generator being used is large. In general, of the four methods
for creating multiple streams described here, this is the least satisfactory.

The one exception to this is the Wichmann–Hill II generator. The Wichmann and Hill (2006) paper
describes a method of generating blocks of variates, with lengths up to 290, by fixing the first three seed
values of the generator (w0, x0 and y0), and setting z0 to a different value for each stream required. This
is similar to the skip-ahead method described in Section 2.11.3, in that the full sequence of the
Wichmann–Hill II generator is split into a number of different blocks, in this case with a fixed length of
290. But without the computationally intensive initialization usually required for the skip-ahead method.

G05 – Random Number Generators Introduction – G05

Mark 25 G05.13

2.11.2 Multiple Streams via Different Generators

Independent sequences of variates can be generated using a different base generator for each sequence.
For example, sequence 1 can be generated using the NAG basic generator, sequence 2 using Mersenne
Twister, sequence 3 the ACORN generator and sequence 4 using L’Ecuyer generator. The Wichmann–
Hill I generator implemented in this chapter is, in fact, a series of 273 independent generators. The
particular sub-generator to use is selected using the SUBID variable. Therefore, in total, 278 independent
streams can be generated with each using a different generator (273 Wichmann–Hill I generators, and 5
additional base generators).

2.11.3 Multiple Streams via Skip-ahead

Independent sequences of variates can be generated from a single base generator through the use of
block-splitting, or skipping-ahead. This method consists of splitting the sequence into k non-overlapping
blocks, each of length n, where n is no smaller than the maximum number of variates required from any
of the sequences. For example,

x1; x2; . . . ; xn
block 1

;
xnþ1; xnþ2; . . . ; x2n

block 2
;
x2nþ1; x2nþ2; . . . ; x3n

block 3
; etc:

where x1; x2; . . . is the sequence produced by the generator of interest. Each of the k blocks provide an
independent sequence.

The skip-ahead algorithm therefore requires the sequence to be advanced a large number of places, as to
generate values from say, block b, you must skip over the b� 1ð Þn values in the first b� 1 blocks.
Owing to their form this can be done efficiently for linear congruential generators and multiple
congruential generators. A skip-ahead algorithm is also provided for the Mersenne Twister generator.

Although skip-ahead requires some additional computation at the initialization stage (to ‘fast forward’
the sequence) no additional computation is required at the generation stage.

This method of producing multiple streams can also be used for the Sobol and Niederreiter quasi-random
number generator via the parameter ISKIP in G05YLF.

2.11.4 Multiple Streams via Leap-frog

Independent sequences of variates can also be generated from a single base generator through the use of
leap-frogging. This method involves splitting the sequence from a single generator into k disjoint
subsequences. For example:

Subsequence 1 : x1; xkþ1; x2kþ1; . . .
Subsequence 2 : x2; xkþ2; x2kþ2; . . .

..

.

Subsequence k: xk; x2k; x3k; . . . ;

where x1; x2; . . . is the sequence produced by the generator of interest. Each of the k subsequences then
provides an independent stream of variates.

The leap-frog algorithm therefore requires the generation of every kth variate from the base generator.
Owing to their form this can be done efficiently for linear congruential generators and multiple
congruential generators. A leap-frog algorithm is provided for the NAG Basic generator, both the
Wichmann–Hill I and Wichmann–Hill II generators and L’Ecuyer generator.

It is known that, dependent on the number of streams required, leap-frogging can lead to sequences with
poor statistical properties, especially when applied to linear congruential generators. In addition, leap-
frogging can increase the time required to generate each variate. Therefore leap-frogging should be
avoided unless absolutely necessary.

2.11.5 Skip-ahead and Leap-frog for a Linear Congruential Generator (LCG):
An Example

As an illustrative example, a brief description of the algebra behind the implementation of the leap-frog
and skip-ahead algorithms for a linear congruential generator is given. A linear congruential generator
has the form xiþ1 ¼ a1xi mod m1. The recursive nature of a linear congruential generator means that

Introduction – G05 NAG Library Manual

G05.14 Mark 25

xiþv ¼ a1xiþv�1 mod m1

¼ a1 a1xiþv�2 mod m1ð Þ mod m1

¼ a2
1xiþv�2 mod m1

¼ av1xi mod m1:

The sequence can therefore be quickly advanced v places by multiplying the current state (xi) by
av1 mod m1, hence skipping the sequence ahead. Leap-frogging can be implemented by using ak1, where
k is the number of streams required, in place of a1 in the standard linear congruential generator recursive
formula, in order to advance k places, rather than one, at each iteration.

In a linear congruential generator the multiplier a1 is constructed so that the generator has good
statistical properties in, for example, the spectral test. When using leap-frogging to construct multiple
streams this multiplier is replaced with ak1, and there is no guarantee that this new multiplier will have
suitable properties especially as the value of k depends on the number of streams required and so is
likely to change depending on the application. This problem can be emphasized by the lattice structure
of linear congruential generators. Similiarly, the value of a1 is often chosen such that the computation
a1xi mod m1 can be performed efficiently. When a1 is replaced by ak1, this is often no longer the case.

Note that, due to rounding, when using a distributional generator, a sequence generated using leap-
frogging and a sequence constructed by taking every k value from a set of variates generated without
leap-frogging may differ slightly. These differences should only affect the least significant digit.

2.11.6 Skip-ahead and Leap-frog for the Mersenne Twister: An Example

Skipping ahead with the Mersenne Twister generator is based on the definition of a k� k (where
k ¼ 19937) transition matrix, A, over the finite field F2 (with elements 0 and 1). Multiplying A by the
current state xn, represented as a vector of bits, produces the next state vector xnþ1:

xnþ1 ¼ Axn:
Thus, skipping ahead v places in a sequence is equivalent to multiplying by Av:

xnþv ¼ Avxn:

Since calculating Av by a standard square and multiply algorithm is O k3log vð Þð Þ and requires over
47MB of memory (see Haramoto et al. (2008)), an indirect calculation is performed which relies on a
property of the characteristic polynomial p zð Þ of A, namely that p Að Þ ¼ 0. We then define

g zð Þ ¼ zv mod p zð Þ ¼ ak�1z
k�1 þ . . .þ a1zþ a0;

and observe that

g zð Þ ¼ zv þ q zð Þp zð Þ

for a polynomial q zð Þ. Since p Að Þ ¼ 0, we have that g Að Þ ¼ Av and

Avxn ¼ ak�1A
k�1 þ . . .þ a1Aþ a0I

� �
xn:

This polynomial evaluation can be performed using Horner’s method:

Avxn ¼ A . . .A A Aak�1xn þ ak�2xnð Þ þ ak�3xnð Þ þ � � � þ a1xnð Þ þ a0xn;

which reduces the problem to advancing the generator k� 1 places from state xn and adding (where
addition is as defined over F2) the intermediate states for which ai is nonzero.

There are therefore two stages to skipping the Mersenne Twister ahead v places:

(i) Calculate the coefficients of the polynomial g zð Þ ¼ zv mod p zð Þ;
(ii) advance the sequence k� 1 places from the starting state and add the intermediate states that

correspond to nonzero coefficients in the polynomial calculated in the first step.

The resulting state is that for position v in the sequence.

G05 – Random Number Generators Introduction – G05

Mark 25 G05.15

The cost of calculating the polynomial is O k2log vð Þð Þ and the cost of applying it to state is constant.
Skip ahead functionality is typically used in order to generate n independent pseudorandom number
streams (e.g., for separate threads of computation). There are two options for generating the n states:

(i) On the master thread calculate the polynomial for a skip ahead distance of v and apply this
polynomial to state n times, after each iteration j saving the current state for later usage by thread j.

(ii) Have each thread j independently and in parallel with other threads calculate the polynomial for a
distance of jþ 1ð Þv and apply to the original state.

Since lim
v!1

log vð Þ ¼ lognv, then for large v the cost of generating the polynomial for a skip ahead

distance of nv (i.e., the calculation performed by thread n� 1 in option (ii) above) is approximately the
same as generating that for a distance of v (i.e., the calculation performed by thread 0). However, only
one application to state need be made per thread, and if n is sufficiently large the cost of applying the
polynomial to state becomes the dominant cost in option (i), in which case it is desirable to use option
(ii). Tests have shown that as a guideline it becomes worthwhile to switch from option (i) to option (ii)
for approximately n > 30.

Leap frog calculations with the Mersenne Twister are performed by computing the sequence fully up to
the required size and discarding the redundant numbers for a given stream.

3 Recommendations on Choice and Use of Available Routines

3.1 Pseudorandom Numbers

Before generating any pseudorandom variates the base generator being used must be initialized. Once
initialized, a distributional generator can be called to obtain the variates required. No interfaces have
been supplied for direct access to the base generators. If a sequence of random variates from a uniform
distribution on the open interval 0; 1ð Þ, is required, then the uniform distribution routine (G05SAF)
should be called.

3.1.1 Initialization

Before generating any variates the base generator must be initialized. Two utility routines are provided
for this, G05KFF and G05KGF, both of which allow any of the base generators to be chosen.

G05KFF selects and initializes a base generator to a repeatable (when executed serially) state: two calls
of G05KFF with the same parameter-values will result in the same subsequent sequences of random
numbers (when both generated serially).

G05KGF selects and initializes a base generator to a non-repeatable state in such a way that different
calls of G05KGF, either in the same run or different runs of the program, will almost certainly result in
different subsequent sequences of random numbers.

No utilities for saving, retrieving or copying the current state of a generator have been provided. All of
the information on the current state of a generator (or stream, if multiple streams are being used) is
stored in the integer array STATE and as such this array can be treated as any other integer array,
allowing for easy copying, restoring, etc.

3.1.2 Repeated initialization

As mentioned in Section 2.11.1, it is important to note that the statistical properties of pseudorandom
numbers are only guaranteed within sequences and not between sequences produced by the same
generator. Repeated initialization will thus render the numbers obtained less rather than more
independent. In a simple case there should be only one call to G05KFF or G05KGF and this call should
be before any call to an actual generation routine.

3.1.3 Choice of Base Generator

If a single sequence is required then it is recommended that the Mersenne Twister is used as the base
generator (GENID ¼ 3). This generator is fast, has an extremely long period and has been shown to
perform well on various test suites, see Matsumoto and Nishimura (1998), L’Ecuyer and Simard (2002)
and Wichmann and Hill (2006) for example.

Introduction – G05 NAG Library Manual

G05.16 Mark 25

When choosing a base generator, the period of the chosen generator should be borne in mind. A good
rule of thumb is never to use more numbers than the square root of the period in any one experiment as
the statistical properties are impaired. For closely related reasons, breaking numbers down into their bit
patterns and using individual bits may also cause trouble.

3.1.4 Choice of Method for Generating Multiple Streams

If the Wichmann–Hill II base generator is being used, and a period of 290 is sufficient, then the method
described in Section 2.11.1 can be used. If a different generator is used, or a longer period length is
required then generating multiple streams by altering the initial values should be avoided.

Using a different generator works well if less than 277 streams are required.

Of the remaining two methods, both skip-ahead and leap-frogging use the sequence from a single
generator, both guarantee that the different sequences will not overlap and both can be scaled to an
arbitrary number of streams. Leap-frogging requires no a-priori knowledge about the number of variates
being generated, whereas skip-ahead requires you to know (approximately) the maximum number of
variates required from each stream. Skip-ahead requires no a-priori information on the number of
streams required. In contrast leap-frogging requires you to know the maximum number of streams
required, prior to generating the first value. Of these two, if possible, skip-ahead should be used in
preference to leap-frogging. Both methods required additional computation compared with generating a
single sequence, but for skip-ahead this computation occurs only at initialization. For leap-frogging
additional computation is required both at initialization and during the generation of the variates. In
addition, as mentioned in Section 2.11.4, using leap-frogging can, in some instances, change the
statistical properties of the sequences being generated.

Leap-frogging is performed by calling G05KHF after the initialization routine (G05KFF or G05KGF).
For skip-ahead, either G05KJF or G05KKF can be called. Of these, G05KKF restricts the amount being
skipped to a power of 2, but allows for a large ‘skip’ to be performed.

3.1.5 Copulas

After calling one of the copula routines the inverse cumulative distribution function (CDF) can be
applied to convert the uniform marginal distribution into the required form. Scalar and vector routines
for evaluating the CDF, for a range of distributions, are supplied in Chapter G01. It should be noted that
these routines are often described as computing the ‘deviates’ of the distribution.

When using the inverse CDF routines from Chapter G01 it should be noted that some are limited in the
number of significant figures they return. This may affect the statistical properties of the resulting
sequence of variates. Section 7 of the individual routine documentation will give a discussion of the
accuracy of the particular algorithm being used and any available alternatives.

3.2 Quasi-random Numbers

Prior to generating any quasi-random variates the generator being used must be initialized via G05YLF
or G05YNF. Of these, G05YLF can be used to initialize a standard Sobol, Faure or Niederreiter
sequence and G05YNF can be used to initialize a scrambled Sobol or Niederreiter sequence.

Owing to the random nature of the scrambling, before calling the initialization routine G05YNF one of
the pseudorandom initialization routines, G05KFF or G05KGF, must be called.

Once a quasi-random generator has been initialized, using either G05YLF or G05YNF, one of three
generation routines can be called to generate uniformly distributed sequences (G05YMF), Normally
distributed sequences (G05YJF) or sequences with a log-normal distribution (G05YKF). For example,
for a repeatable sequence of scrambled quasi-random variates from the Normal distribution, G05KFF
must be called first (to initialize a pseudorandom generator), followed by G05YNF (to initialize a
scrambled quasi-random generator) and then G05YJF can be called to generate the sequence from the
required distribution.

See the last paragraph of Section 3.1.5 on how sequences from other distributions can be obtained using
the inverse CDF.

G05 – Random Number Generators Introduction – G05

Mark 25 G05.17

3.3 Brownian Bridge

G05XBF may be used to generate sample paths from a (free or non-free) Wiener process using the
Brownian bridge algorithm. Prior to calling G05XBF, the generator must be initialized by a call to
G05XAF. G05XAF requires you to specify a bridge construction order. The routine G05XEF can be
used to convert a set of input times into one of several common bridge construction orders, which can
then be used in the initialization call to G05XAF.

G05XDF may be used to generate the scaled increments of the sample paths of a (free or non-free)
Wiener process. Prior to calling G05XDF, the generator must be initialized by a call to G05XCF. Note
that G05XDF generates these scaled increments directly; it is not necessary to call G05XBF before
calling G05XDF. As before, G05XEF can be used to convert a set of input times into a bridge
construction order which can be passed to G05XCF.

3.4 Random Fields

Routines for simulating from either a one-dimensional or a two-dimensional stationary Gaussian random
field are provided. These routines use the circulant embedding method of Dietrich and Newsam (1997) to
efficiently generate from the required field. In both cases a setup routine is called, which defines the
domain and variogram to use, followed by the generation routine. A number of preset variograms are
supplied or a user-defined subroutine can be used.

One-dimensional random field:

G05ZNF setup routine, using a preset variogram.

G05ZMF setup routine, using a user-defined variogram.

G05ZPF generation routine.

Two-dimension random field:

G05ZQF setup routine, using a preset variogram.

G05ZRF setup routine, using a user-defined variogram.

G05ZSF generation routine.

In addition to generating a random field, it is possible to use the circulant embedding method to generate
realizations of fractional Brownian motion, this functionality is provided in G05ZTF.

Before calling G05ZPF, G05ZRF or G05ZTF one of the initialization routines, G05KFF or G05KGF
must be called.

3.5 Sampling

Each of the four sampling methods described in Section 2.8 can be performed using the following
routines:

G05TLF Sampling with replacement, equal weights.

G05TDF Sampling with replacement, unequal weights.

G05NDF Sampling without replacement, equal weights.

G05NEF Sampling without replacement, unequal weights.

In addition to these routines for directly sampling from a dataset two utility routines that perform an in-
place permutation to give datasets suitable for use in validation are provided. G05PVF generates training
and validation datasets suitable for K-fold cross-validation and G05PWF generates training and
validation datasets suitable for random sub-sampling validation. To perform stratified sampling the
dataset should first be ordered by stratum using a sorting routine from Chapter M01 and then one of the
above sampling routines can be applied to each stratum.

Introduction – G05 NAG Library Manual

G05.18 Mark 25

4 Functionality Index

Brownian bridge,
circulant embedding generator,

generate fractional Brownian motion .. G05ZTF
increments generator,

generate Wiener increments.. G05XDF
initialize generator .. G05XCF

path generator,
create bridge construction order ... G05XEF
generate a free or non-free (pinned) Wiener process for a given set of time steps.... G05XBF
initialize generator .. G05XAF

Generating samples, matrices and tables,
permutation of real matrix, vector, vector triplet

K�fold cross-validation ... G05PVF
random sub-sampling validation ... G05PWF

random correlation matrix ... G05PYF
random orthogonal matrix ... G05PXF
random permutation of an integer vector .. G05NCF
random sample from an integer vector,

unequal weights, without replacement .. G05NEF
unweighted, without replacement.. G05NDF

random table ... G05PZF

Generation of time series,
asymmetric GARCH Type II... G05PEF
asymmetric GJR GARCH.. G05PFF
EGARCH .. G05PGF
exponential smoothing... G05PMF
type I AGARCH ... G05PDF
univariate ARMA .. G05PHF
vector ARMA.. G05PJF

Pseudorandom numbers,
array of variates from multivariate distributions,

Dirichlet distribution... G05SEF
multinomial distribution.. G05TGF
Normal distribution .. G05RZF
Student’s t distribution ... G05RYF

copulas,
Clayton/Cook–Johnson copula (bivariate) .. G05REF
Clayton/Cook–Johnson copula (multivariate) ... G05RHF
Frank copula (bivariate) ... G05RFF
Frank copula (multivariate) .. G05RJF
Gaussian copula ... G05RDF
Gumbel–Hougaard copula .. G05RKF
Plackett copula ... G05RGF
Student’s t copula .. G05RCF

initialize generator,
multiple streams,

leap-frog.. G05KHF
skip-ahead ... G05KJF
skip-ahead (power of 2) .. G05KKF

nonrepeatable sequence .. G05KGF
repeatable sequence .. G05KFF

vector of variates from discrete univariate distributions,
binomial distribution... G05TAF
geometric distribution ... G05TCF
hypergeometric distribution .. G05TEF

G05 – Random Number Generators Introduction – G05

Mark 25 G05.19

logarithmic distribution... G05TFF
logical value .TRUE. or .FALSE.. G05TBF
negative binomial distribution .. G05THF
Poisson distribution .. G05TJF
uniform distribution.. G05TLF
user-supplied distribution.. G05TDF
variate array from discrete distributions with array of parameters,

Poisson distribution with varying mean... G05TKF
vectors of variates from continuous univariate distributions,

beta distribution.. G05SBF
Cauchy distribution .. G05SCF
exponential mix distribution ... G05SGF
F -distribution ... G05SHF
gamma distribution... G05SJF
logistic distribution... G05SLF
log-normal distribution ... G05SMF
negative exponential distribution .. G05SFF
Normal distribution .. G05SKF
real number from the continuous uniform distribution ... G05SAF
Student’s t-distribution ... G05SNF
triangular distribution ... G05SPF
uniform distribution.. G05SQF
von Mises distribution.. G05SRF
Weibull distribution .. G05SSF

2 square distribution... G05SDF

Quasi-random numbers,
array of variates from univariate distributions,

log-normal distribution ... G05YKF
Normal distribution .. G05YJF
uniform distribution.. G05YMF

initialize generator,
scrambled Sobol or Niederreiter ... G05YNF
Sobol, Niederreiter or Faure ... G05YLF

Random fields,
one-dimensional,

generation... G05ZPF
initialize generator,

preset variogram.. G05ZNF
user-defined variogram .. G05ZMF

two-dimensional,
generation... G05ZSF
initialize generator,

preset variogram.. G05ZRF
user-defined variogram .. G05ZQF

5 Auxiliary Routines Associated with Library Routine Parameters

None.

6 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 18 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

G05CAF 22 G05SAF

Introduction – G05 NAG Library Manual

G05.20 Mark 25

G05CBF 22 G05KFF
G05CCF 22 G05KGF
G05CFF 22 F06DFF
G05CGF 22 F06DFF
G05DAF 22 G05SQF
G05DBF 22 G05SFF
G05DCF 22 G05SLF
G05DDF 22 G05SKF
G05DEF 22 G05SMF
G05DFF 22 G05SCF
G05DHF 22 G05SDF
G05DJF 22 G05SNF
G05DKF 22 G05SHF
G05DPF 22 G05SSF
G05DRF 22 G05TKF
G05DYF 22 G05TLF
G05DZF 22 G05TBF
G05EAF 22 G05RZF
G05EBF 22 G05TLF
G05ECF 22 G05TJF
G05EDF 22 G05TAF
G05EEF 22 G05THF
G05EFF 22 G05TEF
G05EGF 22 G05PHF
G05EHF 22 G05NCF
G05EJF 22 G05NDF
G05EWF 22 G05PHF
G05EXF 22 G05TDF
G05EYF 22 G05TDF
G05EZF 22 G05RZF
G05FAF 22 G05SQF
G05FBF 22 G05SFF
G05FDF 22 G05SKF
G05FEF 22 G05SBF
G05FFF 22 G05SJF
G05FSF 22 G05SRF
G05GAF 22 G05PXF
G05GBF 22 G05PYF
G05HDF 22 G05PJF
G05HKF 24 G05PDF
G05HLF 24 G05PEF
G05HMF 24 G05PFF
G05HNF 24 G05PGF
G05KAF 24 G05SAF
G05KBF 24 G05KFF
G05KCF 24 G05KGF
G05KEF 24 G05TBF
G05LAF 24 G05SKF
G05LBF 24 G05SNF
G05LCF 24 G05SDF
G05LDF 24 G05SHF
G05LEF 24 G05SBF
G05LFF 24 G05SJF
G05LGF 24 G05SQF
G05LHF 24 G05SPF
G05LJF 24 G05SFF
G05LKF 24 G05SMF
G05LLF 24 G05SJF
G05LMF 24 G05SSF

G05 – Random Number Generators Introduction – G05

Mark 25 G05.21

G05LNF 24 G05SLF
G05LPF 24 G05SRF
G05LQF 24 G05SGF
G05LXF 24 G05RYF
G05LYF 24 G05RZF
G05LZF 24 G05RZF
G05MAF 24 G05TLF
G05MBF 24 G05TCF
G05MCF 24 G05THF
G05MDF 24 G05TFF
G05MEF 24 G05TKF
G05MJF 24 G05TAF
G05MKF 24 G05TJF
G05MLF 24 G05TEF
G05MRF 24 G05TGF
G05MZF 24 G05TDF
G05NAF 24 G05NCF
G05NBF 24 G05NDF
G05PAF 24 G05PHF
G05PCF 24 G05PJF
G05QAF 24 G05PXF
G05QBF 24 G05PYF
G05QDF 24 G05PZF
G05RAF 24 G05RDF
G05RBF 24 G05RCF
G05YAF 23 G05YLF and G05YMF
G05YBF 23 G05YLF and either G05YJF or G05YKF
G05YCF 24 G05YLF
G05YDF 24 G05YMF
G05YEF 24 G05YLF
G05YFF 24 G05YMF
G05YGF 24 G05YLF
G05YHF 24 G05YMF
G05ZAF 22 No replacement routine required

7 References

Banks J (1998) Handbook on Simulation Wiley

Boye E (Unpublished manuscript) Copulas for finance: a reading guide and some applications Financial
Econometrics Research Centre, City University Business School, London

Bratley P and Fox B L (1988) Algorithm 659: implementing Sobol’s quasirandom sequence generator
ACM Trans. Math. Software 14(1) 88–100

Dietrich C R and Newsam G N (1997) Fast and exact simulation of stationary Gaussian processes
through circulant embedding of the covariance matrix SIAM J. Sci. Comput. 18 1088–1107

Faure H and Tezuka S (2000) Another random scrambling of digital (t,s)-sequences Monte Carlo and
Quasi-Monte Carlo Methods Springer-Verlag, Berlin, Germany (eds K T Fang, F J Hickernell and H
Niederreiter)

Fox B L (1986) Algorithm 647: implementation and relative efficiency of quasirandom sequence
generators ACM Trans. Math. Software 12(4) 362–376

Glasserman P (2004) Monte Carlo Methods in Financial Engineering Springer

Haramoto H, Matsumoto M, Nishimura T, Panneton F and L’Ecuyer P (2008) Efficient jump ahead for
F2-linear random number generators INFORMS J. on Computing 20(3) 385–390

Hong H S and Hickernell F J (2003) Algorithm 823: implementing scrambled digital sequences ACM
Trans. Math. Software 29:2 95–109

Introduction – G05 NAG Library Manual

G05.22 Mark 25

Joe S and Kuo F Y (2008) Constructing Sobol sequences with better two-dimensional projections SIAM
J. Sci. Comput. 30 2635–2654

Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley

L’Ecuyer P and Simard R (2002) TestU01: a software library in ANSI C for empirical testing of random
number generators Departement d’Informatique et de Recherche Operationnelle, Universite de Montreal
http://www.iro.umontreal.ca/~lecuyer

Maclaren N M (1989) The generation of multiple independent sequences of pseudorandom numbers
Appl. Statist. 38 351–359

Matsumoto M and Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform
pseudorandom number generator ACM Transactions on Modelling and Computer Simulations

Morgan B J T (1984) Elements of Simulation Chapman and Hall

Nelsen R B (1998) An Introduction to Copulas. Lecture Notes in Statistics 139 Springer

Owen A B (1995) Randomly permuted (t,m,s)-nets and (t,s)-sequences Monte Carlo and Quasi-Monte
Carlo Methods in Scientific Computing, Lecture Notes in Statistics 106 Springer-Verlag, New York, NY
299–317 (eds H Niederreiter and P J-S Shiue)

Revuz D and Yor M (1999) Continuous Martingales and Brownian Motion Springer

Ripley B D (1987) Stochastic Simulation Wiley

Sklar A (1973) Random variables: joint distribution functions and copulas Kybernetika 9 499–460

Wichmann B A and Hill I D (2006) Generating good pseudo-random numbers Computational Statistics
and Data Analysis 51 1614–1622

Wikramaratna R S (1989) ACORN - a new method for generating sequences of uniformly distributed
pseudo-random numbers Journal of Computational Physics 83 16–31

Wikramaratna R S (1992) Theoretical background for the ACORN random number generator Report
AEA-APS-0244 AEA Technology, Winfrith, Dorest, UK

Wikramaratna R S (2007) The additive congruential random number generator a special case of a
multiple recursive generator Journal of Computational and Applied Mathematics

G05 – Random Number Generators Introduction – G05

Mark 25 G05.23 (last)

http://www.iro.umontreal.ca/~lecuyer

	G05 - Random Number Generators, Chapter Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	2.1 Pseudorandom Numbers
	2.1.1 NAG Basic Generator
	2.1.2 Wichmann-Hill I Generator
	2.1.3 Wichmann-Hill II Generator
	2.1.4 Mersenne Twister Generator
	2.1.5 ACORN Generator
	2.1.6 L’Ecuyer MRG32k3a Combined Recursive Generator

	2.2 Quasi-random Numbers
	2.3 Scrambled Quasi-random Numbers
	2.4 Non-uniform Random Numbers
	2.5 Copulas
	2.6 Brownian Bridge
	2.6.1 Brownian Bridge Process
	2.6.2 Brownian Bridge Algorithm
	2.6.3 Bridge Construction Order and Quasi-random Sequences
	2.6.4 Brownian Bridge and Stochastic Differential Equations

	2.7 Random Fields
	2.8 Sampling
	2.9 Sampling Based Validation
	2.10 Other Random Structures
	2.11 Multiple Streams of Pseudorandom Numbers
	2.11.1 Multiple Streams via Different Initial Values (Seeds)
	2.11.2 Multiple Streams via Different Generators
	2.11.3 Multiple Streams via Skip-ahead
	2.11.4 Multiple Streams via Leap-frog
	2.11.5 Skip-ahead and Leap-frog for a Linear Congruential Generator (LCG): An Example
	2.11.6 Skip-ahead and Leap-frog for the Mersenne Twister: An Example

	3 Recommendations on Choice and Use of Available Routines
	3.1 Pseudorandom Numbers
	3.1.1 Initialization
	3.1.2 Repeated initialization
	3.1.3 Choice of Base Generator
	3.1.4 Choice of Method for Generating Multiple Streams
	3.1.5 Copulas

	3.2 Quasi-random Numbers
	3.3 Brownian Bridge
	3.4 Random Fields
	3.5 Sampling

	4 Functionality Index
	5 Auxiliary Routines Associated with Library Routine Parameters
	6 Routines Withdrawn or Scheduled for Withdrawal
	7 References
	Banks (1998)
	Boye (Unpublished manuscript)
	Bratley and Fox (1988)
	Dietrich and Newsam (1997)
	Faure and Tezuka (2000)
	Fox (1986)
	Glasserman (2004)
	Haramoto et al. (2008)
	Hong and Hickernell (2003)
	Joe and Kuo (2008)
	Knuth (1981)
	L’Ecuyer and Simard (2002)
	Maclaren (1989)
	Matsumoto and Nishimura (1998)
	Morgan (1984)
	Nelsen (1998)
	Owen (1995)
	Revuz and Yor (1999)
	Ripley (1987)
	Sklar (1973)
	Wichmann and Hill (2006)
	Wikramaratna (1989)
	Wikramaratna (1992)
	Wikramaratna (2007)

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

