NAG Library Routine Document

G01AUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

G01AUF combines sets of summaries produced by G01ATF.

2 Specification

```
SUBROUTINE GO1AUF (B, MRCOMM, PN, XMEAN, XSD, XSKEW, XKURT, XMIN, XMAX, RCOMM, IFAIL)

INTEGER

B, PN, IFAIL

REAL (KIND=nag_wp) MRCOMM(20,B), XMEAN, XSD, XSKEW, XKURT, XMIN, XMAX, RCOMM(20)
```

3 Description

Assume a dataset containing n observations, denoted by $x = \{x_i : i = 1, 2, ..., n\}$ and a set of weights, $w = \{w_i : i = 1, 2, ..., n\}$, has been split into b blocks, and each block summarised via a call to G01ATF. Then G01AUF takes the b communication arrays returned by G01ATF and returns the mean (\bar{x}) , standard deviation (s_2) , coefficients of skewness (s_3) and kurtosis (s_4) , and the maximum and minimum values for the whole dataset.

For a definition of \bar{x} , s_2 , s_3 and s_4 see Section 3 in G01ATF.

4 References

West D H D (1979) Updating mean and variance estimates: An improved method *Comm. ACM* **22** 532–555

5 Parameters

1: B – INTEGER Input

On entry: b, the number of blocks the full dataset was split into.

Constraint: $B \ge 1$.

2: MRCOMM(20, B) - REAL (KIND=nag wp) array

Communication Array

On entry: the jth column of MRCOMM must contain the information returned in RCOMM from one of the runs of G01ATF.

3: PN – INTEGER Output

On exit: the number of valid observations, that is the number of observations with $w_i > 0$, for i = 1, 2, ..., n.

4: XMEAN - REAL (KIND=nag_wp)

Output

On exit: \bar{x} , the mean.

5: XSD - REAL (KIND=nag_wp)

Output

On exit: s_2 , the standard deviation.

Mark 25 G01AUF.1

G01AUF NAG Library Manual

6: XSKEW - REAL (KIND=nag wp)

Output

On exit: s3, the coefficient of skewness.

7: XKURT – REAL (KIND=nag_wp)

Output

On exit: s4, the coefficient of kurtosis.

8: XMIN - REAL (KIND=nag wp)

Output

On exit: the smallest value.

9: XMAX – REAL (KIND=nag wp)

Output

On exit: the largest value.

10: RCOMM(20) - REAL (KIND=nag_wp) array

Communication Array

On exit: an amalgamation of the information held in MRCOMM. This is in the same format as RCOMM from G01ATF.

11: IFAIL - INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL = 0 unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL = 11

On entry, $B = \langle value \rangle$. Constraint: $B \ge 1$.

IFAIL = 21

On entry, MRCOMM is not in the expected format.

IFAIL = 31

On entry, the number of valid observations is zero.

 $\mathrm{IFAIL} = 51$

On exit we were unable to calculate XSKEW or XKURT. A value of 0 has been returned.

 $\mathrm{IFAIL} = 52$

On exit we were unable to calculate XSD, XSKEW or XKURT. A value of 0 has been returned.

G01AUF.2 Mark 25

```
IFAIL = -99
```

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

```
IFAIL = -399
```

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

```
IFAIL = -999
```

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The order that the *b* communication arrays are stored in MRCOMM is arbitrary. Different orders can lead to slightly different results due to numerical accuracy of floating-point calculations.

Both G01AUF and G01ATF consolidate results from multiple summaries. Whereas the former can only be used to combine summaries calculated sequentially, the latter combines summaries calculated in an arbitrary order allowing, for example, summaries calculated on different processing units to be combined.

10 Example

This example summarises some simulated data. The data is supplied in three blocks, the first consisting of 21 observations, the second 51 observations and the last 28 observations. Summaries are produced for each block of data separately and then an overall summary is produced.

10.1 Program Text

```
Program g01aufe
      GO1AUF Example Program Text
      Mark 25 Release. NAG Copyright 2014.
      .. Use Statements ..
      Use nag_library, Only: g01atf, g01auf, nag_wp
      .. Implicit None Statement ..
      Implicit None
      .. Parameters .
1
      Integer, Parameter
                                          :: nin = 5, nout = 6
!
      .. Local Scalars ..
                                          :: xkurt, xmax, xmean, xmin, xsd, xskew
:: b, i, ifail, iwt, j, nb, pn
      Real (Kind=nag_wp)
      Integer
!
      .. Local Arrays ..
      Real (Kind=nag_wp), Allocatable :: mrcomm(:,:), wt(:), x(:)
      Real (Kind=nag_wp)
                                         :: rcomm(20)
      .. Executable Statements ..
      Write (nout,*) 'G01AUF Example Program Results'
      Write (nout,*)
```

Mark 25 G01AUF.3

G01AUF NAG Library Manual

```
Skip heading in data file
     Read (nin,*)
     Read in the number of block of data we have
     Read (nin,*) b
     Allocate (mrcomm(20,b))
!
     Loop over each block of data
     Do i = 1, b
       Read in the number of observations in this block and the weight flag
!
       Read (nin,*) nb, iwt
       Allocate X to the required size
!
       Allocate (x(nb))
        Read in the data for this block
        If (iwt==0) Then
          Allocate (wt(0))
         Read (nin,*) x(1:nb)
        Else
          Allocate (wt(nb))
         Read (nin,*)(x(j),wt(j),j=1,nb)
        End If
        IFAIL = 53, 71 or 72 are warnings and so we don't want to terminate
        on any non-zero IFAIL. Therefore we set the flag for a quiet exit
        ifail = 1
        Summarise this block of data
        pn = 0
        Call g01atf(nb,x,iwt,wt,pn,xmean,xsd,xskew,xkurt,xmin,xmax, &
         mrcomm(1:20,i),ifail)
        If (ifail/=0 .And. ifail/=71 .And. ifail/=72 .And. ifail/=53) Then
          Write (nout,*) 'GO1ATF failed with IFAIL = ', ifail
         Exit
        End If
        Display the results for this block Write (nout,99999) 'Summary for block ', i
        If (ifail==53) Then
          Write (nout,*) &
            'No valid observations supplied. All weights are zero.'
        Else
          Write (nout,99997) pn, 'valid observations'
          Write (nout,99998) ' Mean ', xmean
          If (ifail==72) Then
            Write (nout,*) ' Unable to calculate the standard &
             &deviation, skewness or kurtosis'
            Write (nout, 99998) 'Std devn
                                              ', xsd
            If (ifail==71) Then
              Write (nout,*) ' Unable to calculate the skewness or kurtosis'
              Write (nout, 99998) ' Skewness
                                                    ', xskew
              Write (nout,99998) ' Kurtosis
                                                    ', xkurt
            End If
          End If
         Write (nout,99998) ' Minimum
Write (nout,99998) ' Maximum
                                                ', xmin
        End If
        Write (nout,*)
        Deallocate (x,wt)
     If (ifail==0 .Or. ifail==71 .Or. ifail==72 .Or. ifail==53) Then
        Combine the summaries across all the blocks
        Call g01auf(b,mrcomm,pn,xmean,xsd,xskew,xkurt,xmin,xmax,rcomm,ifail)
        Display the combined results
```

G01AUF.4 Mark 25

```
Write (nout,99999) 'Summary for the combined data'
        If (ifail==53) Then
          Write (nout,*) &
            'No valid observations supplied. All weights are zero.'
          Write (nout,99997) pn, 'valid observations'
          Write (nout,99998) ' Mean
          If (ifail==72) Then
            Write (nout,*) ' Unable to calculate the standard &
             &deviation, skewness and kurtosis'
          Else
            Write (nout,99998) '
                                                ', xsd
                                  Std devn
            If (ifail==71) Then
             Write (nout,*) ^{\prime} Unable to calculate the skewness and kurtosis^{\prime}
            Else
              Write (nout,99998) ' Skewness
                                                    ', xskew
                                                  ', xkurt
              Write (nout, 99998) ' Kurtosis
            End If
          End If
          Write (nout,99998) ' Minimum
                                               ', xmin
          Write (nout, 99998) ' Maximum
                                               ', xmax
        End If
     End If
99999 Format (1X,A,IO,A)
99998 Format (1X,A,F13.2)
99997 Format (1X,IO,1X,A)
   End Program g01aufe
```

10.2 Program Data

```
GO1AUF Example Program Data
                                              :: B
21 1
                                              :: NB, IWT (1st block)
 -0.62 4.91
                    -1.92 0.25
 -1.72 3.90
                    -6.35 3.75
                    7.65 3.19
3.81 0.02
  2.00 1.17
  6.15 2.66
  4.87 3.59
                   -0.51 3.63
  6.88 4.83
                   -5.85 3.72
 -0.72 1.72
                    0.66 0.78
  2.23 4.74
                    -1.61 1.72
 -0.15 3.94
                    -1.15 1.33
 -8.74 0.51
                    -3.94 2.40
  3.61 3.90
                                               :: End of X,WT for 1st block
                                               :: NB, IWT (2nd block)
  51 0
 -0.66 -2.39 -6.25 1.23 2.27 -2.27
10.12 8.29 -2.99 8.71 -0.74 0.02
  1.22 1.70 4.30 2.99 -0.83 -1.00
 6.57 2.32 -3.47 -1.41 -5.26 0.53
1.80 4.79 -3.04 1.20 -3.21 -3.75
0.86 1.27 -5.95 -5.27 1.63 3.59
-0.01 -1.38 -4.71 -4.82 3.55 0.46
  2.57 1.76 -4.05 1.23 -1.99 3.20
 -0.65 8.42 -6.01
                                                 :: End of X for 2nd block
                                                 :: NB, IWT (3rd block)
  28 0
  1.13 -8.86 5.92 -1.71 -3.99 6.57
 -2.01 -2.29 -1.11 7.14 4.84 -4.44
 -3.32 10.25 -2.11 8.02 -7.31 2.80
-1.20 1.01 1.37 -2.28 1.28 -3.95
3.43 -0.61 4.85 -0.11
                                                :: End of X for 3rd block
```

10.3 Program Results

```
GO1AUF Example Program Results
Summary for block 1
21 valid observations
Mean 0.73
Std devn 4.40
```

Mark 25 G01AUF.5

G01AUF NAG Library Manual

Skewness Kurtosis Minimum Maximum	-0.05 -1.00 -8.74 7.65
Summary for block 2 51 valid observations Mean Std devn Skewness Kurtosis Minimum Maximum	0.28 3.96 0.46 -0.16 -6.25 10.12
Summary for block 3 28 valid observations Mean Std devn Skewness Kurtosis Minimum Maximum	0.48 4.65 0.19 -0.58 -8.86 10.25
Summary for the combined 100 valid observations Mean Std devn Skewness Kurtosis Minimum Maximum	<pre>data 0.51 4.24 0.18 -0.59 -8.86 10.25</pre>

G01AUF.6 (last)

Mark 25