F1l — Large Scale Linear Systems F11DKF

NAG Library Routine Document
F11DKF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F11DKF computes the approximate solution of a real, symmetric or nonsymmetric, sparse system of
linear equations applying a number of Jacobi iterations. It is expected that F11DKF will be used as a
preconditioner for the iterative solution of real sparse systems of equations.

2 Specification

SUBROUTINE F11DKF (STORE, TRANS, INIT, NITER, N, NNZ, A, IROW, ICOL, &
CHECK, B, X, DIAG, WORK, IFAIL)

INTEGER NITER, N, NNZ, IROW(NNZ), ICOL(NNZ), IFAIL

REAL (KIND=nag_wp) A(NNZ), B(N), X(N), DIAG(N), WORK(N)

CHARACTER (1) STORE, TRANS, INIT, CHECK

3 Description

F11DKF computes the approximate solution of the real sparse system of linear equations Az = b using
NITER iterations of the Jacobi algorithm (see also Golub and Van Loan (1996) and Young (1971)):

Tyl = T + Dil(b - A.’L‘k) (1)
where £ =1,2,...,NITER and xy = 0.

F11DKF can be used both for nonsymmetric and symmetric systems of equations. For symmetric
matrices, either all nonzero elements of the matrix A can be supplied using coordinate storage (CS), or
only the nonzero elements of the lower triangle of A, using symmetric coordinate storage (SCS) (see the
F11 Chapter Introduction).

It is expected that F11DKF will be used as a preconditioner for the iterative solution of real sparse
systems of equations, using either the suite comprising the routines F11GDF, F11GEF and F11GFF, for
symmetric systems, or the suite comprising the routines F11BDF, F11BEF and F11BFF, for
nonsymmetric systems of equations.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Young D (1971) Iterative Solution of Large Linear Systems Academic Press, New York

5 Parameters

1: STORE — CHARACTER(1) Input

On entry: specifies whether the matrix A is stored using symmetric coordinate storage (SCS)
(applicable only to a symmetric matrix A) or coordinate storage (CS) (applicable to both
symmetric and non-symmetric matrices).

STORE ='N'
The complete matrix A is stored in CS format.

Mark 25 FI1IDKF]

F11DKF NAG Library Manual

STORE ="S'
The lower triangle of the symmetric matrix A is stored in SCS format.

Constraint: STORE ='N' or 'S".

2: TRANS — CHARACTER(]) Input
On entry: if STORE = 'N', specifies whether the approximate solution of Az = b or of ATz = b is
required.

TRANS ='N'
The approximate solution of Ax = b is calculated.
TRANS ='T'

The approximate solution of ATz = b is calculated.

Suggested value: if the matrix A is symmetric and stored in CS format, it is recommended that
TRANS ='N' for reasons of efficiency.

Constraint: TRANS ='N' or 'T".

3: INIT — CHARACTER(1) Input

On entry: on first entry, INIT should be set to ‘I’, unless the diagonal elements of A are already
stored in the array DIAG. If DIAG already contains the diagonal of A, it must be set to ‘N’.

INIT ='N'
DIAG must contain the diagonal of A.
INIT ="T

DIAG will store the diagonal of A on exit.

Suggested value: INIT ='I' on first entry; INIT ='N', subsequently, unless DIAG has been
overwritten.

Constraint. INIT ='N' or 'l

4: NITER - INTEGER Input
On entry: the number of Jacobi iterations requested.

Constraint: NITER > 1.

5: N — INTEGER Input
On entry: n, the order of the matrix A.

Constraint: N > 1.

6: NNZ - INTEGER Input
On entry: if STORE ='N', the number of nonzero elements in the matrix A.
If STORE ="'S', the number of nonzero elements in the lower triangle of the matrix A.
Constraints:
if STORE ='N', 1 <NNZ < N?;
if STORE="S,] <NNZ<Nx (N+1)/2.
7: A(NNZ) — REAL (KIND=nag_wp) array Input
On entry: if STORE ='N', the nonzero elements in the matrix A (CS format).
If STORE ='S', the nonzero elements in the lower triangle of the matrix A (SCS format).

In both cases, the elements of either A or of its lower triangle must be ordered by increasing row
index and by increasing column index within each row. Multiple entries for the same row and

FI1IDKF.2 Mark 25

F1l — Large Scale Linear Systems F11DKF

10:

11:

12:

13:

14:

15:

columns indices are not permitted. The routine F11ZAF or F11ZBF may be used to reorder the
elements in this way for CS and SCS storage, respectively.

IROW(NNZ) — INTEGER array Input
ICOL(NNZ) — INTEGER array Input

On entry: if STORE ='N', the row and column indices of the nonzero elements supplied in A.

If STORE ="'S', the row and column indices of the nonzero elements of the lower triangle of the
matrix A supplied in A.

Constraints:

1 <IROW(i) <N, for i = 1,2,...,NNZ;
if STORE =N, 1 < ICOL(4) <N, for i = 1,2,...,NNZ;
if STORE ='S', 1 < ICOL(i) < IROW(4), for i = 1,2,...,NNZ;
either IROW(i—1)<IROW(i) or both IROW(i—1)=IROW(i) and
ICOL(i— 1) < ICOL(4), for i =2,3,...,NNZ.
CHECK — CHARACTER(1) Input

On entry: specifies whether or not the CS or SCS representation of the matrix A should be
checked.

CHECK ="'C'
Checks are carried out on the values of N, NNZ, IROW, ICOL; if INIT = 'N', DIAG is also
checked.

CHECK ='N'
None of these checks are carried out.

See also Section 9.2.

Constraint. CHECK ="'C' or 'N"

B(N) — REAL (KIND=nag_wp) array Input
On entry: the right-hand side vector b.

X(N) — REAL (KIND=nag_wp) array Output

On exit: the approximate solution vector znTgr-

DIAG(N) — REAL (KIND=nag_wp) array Input/Output
On entry: if INIT ='N/, the diagonal elements of A.

On exit. if INIT ='N', unchanged on exit.

If INIT ='T', the diagonal elements of A.

WORK(N) — REAL (KIND=nag_wp) array Workspace

IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value —1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value —1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL =0 unless the routine detects an error or a warning has been flagged (see
Section 6).

Mark 25 FI1IDKF.3

F11DKF NAG Library Manual

6 Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL =1
On entry, STORE # 'N' or 'S',
or TRANS # 'N' or 'T,
or INIT #'N' or 'T,
or CHECK #'C' or 'N/,
or NITER < 0.
IFAIL =2
On entry, N < 1,
or NNZ < 1,
or NNZ > N?, if STORE ='N,
or 1 < NNZ < [N(N + 1)]/2, if STORE ='S".
IFAIL =3

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:
1 <IROW(:) <N and
if STORE ='N' then 1 <ICOL(i) <N, or
if STORE ="'S' then 1 <ICOL(7) < IROW(i), for i =1,2,...,NNZ.

IROW(i — 1) < IROW(i) or IROW(i — 1) = IROW(i) and ICOL(i— 1) < ICOL(i), for
i=2,3,...,NNZ.

Therefore a nonzero element has been supplied which does not lie within the matrix A, is out of
order, or has duplicate row and column indices. Call either F11ZAF or F11ZBF to reorder and
sum or remove duplicates when STORE = 'N' or STORE ="'S', respectively.

IFAIL =4

On entry, INIT ='N' and some diagonal elements of A stored in DIAG are zero.

IFAIL =5

On entry, INIT ='I' and some diagonal elements of A are zero.

IFAIL = —99
An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL = —399
Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL = —999
Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

FI1IDKF 4 Mark 25

F1l — Large Scale Linear Systems F11DKF

7 Accuracy

In general, the Jacobi method cannot be used on its own to solve systems of linear equations. The rate of
convergence is bound by its spectral properties (see, for example, Golub and Van Loan (1996)) and as a
solver, the Jacobi method can only be applied to a limited set of matrices. One condition that guarantees
convergence is strict diagonal dominance.

However, the Jacobi method can be used successfully as a preconditioner to a wider class of systems of
equations. The Jacobi method has good vector/parallel properties, hence it can be applied very
efficiently. Unfortunately, it is not possible to provide criteria which define the applicability of the Jacobi
method as a preconditioner, and its usefulness must be judged for each case.

8 Parallelism and Performance

F11DKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F11DKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments
9.1 Timing
The time taken for a call to F11DKF is proportional to NITER x NNZ.

9.2 Use of CHECK

It is expected that a common use of F11DKF will be as preconditioner for the iterative solution of real,
symmetric or nonsymmetric, linear systems. In this situation, F11DKF is likely to be called many times.
In the interests of both reliability and efficiency, you are recommended to set CHECK = 'C' for the first
of such calls, and to set CHECK = 'N' for all subsequent calls.

10 Example

This example solves the real sparse nonsymmetric system of equations Ax = b iteratively using F11DKF
as a preconditioner.

10.1 Program Text
Program flldkfe

! F11DKF Example Program Text
! Mark 25 Release. NAG Copyright 2014.

! .. Use Statements .

Use nag_library, Only: fllbdf, fllbef, f11bff, f£11dkf, fllxaf, nag_wp
! .. Implicit None Statement

Implicit None
! .. Parameters

Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars
Real (Kind=nag_wp) :: anorm, sigmax, stplhs, stprhs, tol
Integer :: i, ifail, ifaill, irevcm, iterm, &

itn, lwork, lwreq, m, maxitn, monit, &
n, niter, nnz
Character (1) :: init, norm, precon, weight

Mark 25 FI1IDKF5

F11DKF NAG Library Manual
Character (8) :: method
! .. Local Arrays
Real (Kind=nag_wp), Allocatable =:: a(:), b(:), diag(:), wgt(:), &
work(:), x(:)
Integer, Allocatable :: icol(:), dirow(:)

! .. Executable Statements
Write (nout,*) ’'F11DKF Example Program Results’

! Skip heading in data file

Read (nin,*)
Read (nin,*) n
Read (nin,*) nnz
lwork = 200

Allocate (a(nnz),b(n),diag(n),wgt(n),work(lwork),x(n),icol(nnz), &

irow(nnz))

! Read or initialize the parameters for the iterative solver

Read () method

Read (nin,*) precon, norm, weight, iterm
Read (nin,*) m, tol, maxitn

Read (nin,*) monit

anorm = 0.0EO_nag_wp

sigmax = 0.0EO_nag_wp

! Read the parameters for the preconditioner
Read (nin,*) niter

! Read the non-zero elements of the matrix A
Do i = 1, nnz

Read (nin,*) a(i), irow(i), dicol(1i)
End Do

! Read right-hand side vector b and initial approximate solution

Read (nin,*) b(l:n)
Read (nin,*) x(1l:n)

! Call F11BDF to initialize the solver
! ifail: behaviour on error exit

! =0 for hard exit, =1 for quiet-soft, =
ifail = 0

-1 for noisy-soft

Call f11bdf (method,precon,norm,weight,iterm,n,m,tol,maxitn,anorm,sigmax, &

monit,lwreq,work,lwork,ifail)

! Call repeatedly F1l1BEF to solve the equations
! Note that the arrays B and X are overwritten

! On final exit, X will contain the solution and B the residual

! vector
irevcm = 0
init = "I’
ifail = 1
loop: Do

Call fllbef(irevcm,x,b,wgt,work,lwreq,ifail)

If (irevcm/=4) Then
ifaill = -1
Select Case (irevcm)
Case (-1)

Call fllxaf(’Transpose’,n,nnz,a,irow,icol,’No checking’,x,b, &

ifaill)

Case (1)

FI1IDKF.6

Mark 25

F1l — Large Scale Linear Systems

100

99999

99998
99997
99996
99995
99994
99993

F11DKF

Call fllxaf(’No transpose’,n,nnz,a,irow,icol,’No checking’,x,b, &

ifaill)

Case (2)

Call f11dkf(’Non symmetric’,’N’,init,niter,n,nnz,a,irow,icol, &
"Check’,x,b,diag,work (lwreqg+1l),ifaill)

init = 'N’
Case (3)
ifaill = 0O

Call f11bff(itn,stplhs,stprhs,anorm,sigmax,work,lwreq,ifaill)

Write (nout,99999) itn, stplhs
End Select
If (ifaill/=0) irevcm = 6
Else If (ifail/=0) Then
Write (nout,99993) ifail

Go To 100
Else

Exit loop
End If

End Do loop
Obtain information about the computation

ifaill = 0O

Call f11bff(itn,stplhs,stprhs,anorm,sigmax,work,lwreq,ifaill)

Print the output data
Write (nout,99996)
Write (nout,99995
Write (nout,99994) ’'Residual norm:
Write (nout,99994

(

Write (nout,99994

—_—— — —

"l-norm of matrix A:
Output x

Write (nout,99998)
Write (nout,99997)(x(i),b(i),i=1,n)
Continue

Format (
E14.4)

Format (

Format (1X,1P,El6.4,1X,E16.4)

Format (/1X,’Final Results’)

Format (1X,A,I4)

Format (1X,A,1P,E14.4)

Format (1X/1X,’ ** F11BEF returned with IFAIL =

End Program flldkfe

10.2 Program Data

F11DKF Example Program Data

8 N

24 NNZ

"BICGSTAB’ METHOD

rproo 1 N1 PRECON, NORM, WEIGHT,
2 1.0D-6 20 M, TOL, MAXITN
1 MONIT

4 NITER

4. 1 1

-1. 1 4

1. 1 8

4. 2 1

-5. 2 2

2. 2 5

Mark 25

ITERM

"Number of iterations for convergence:

/2X," Solution vector’,2X,’ Residual vector’)

',I5)

r

14

14

’

’

"Right-hand side of termination criterion:’,

4

itn
stplhs
stprhs
anorm

/1X,'Monitoring at iteration no.’,I4/1X,1P,’'residual no’,’'rm: ', &

FI11DKF.7

F11DKF

46.
34.

N
OONOWOIOITNTJUWOWRJUUNIddWEREOW

[e¢]
OORPWMWMWWOMIIJOoOO0O0 Ul b DD ww

=
OO JO O
N

10.3 Program Results

A(I)

, IROW(I),

F11DKF Example Program Results

Final Results

ICOL(I), I=1,...

Number of iterations for convergence: 2

Residual norm:

Right-hand side of termination criterion:

l-norm of matrix A:

Solution vector
.7035E+00
.0805E+00
.8305E+00
.0251E+00
.2942E+00
.9068E+00
.1365E+00
.2111E+00

R WO R R P

Residual vector

3.
-1.
2.
-2.
7.
9.
-3.
1.

2377E-07
7625E-05
7964E-05
5914E-05
8156E-06
2064E-06
0848E-06
9834E-05

,NNZ

1.1177E-04

5.4082E-04

1.5000E+01

NAG Library Manual

F1IDKF.S8 (last)

Mark 25

	F11DKF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Golub and Van Loan (1996)
	Young (1971)

	5 Parameters
	STORE
	TRANS
	INIT
	NITER
	N
	NNZ
	A
	IROW
	ICOL
	CHECK
	B
	X
	DIAG
	WORK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	9.1 Timing
	9.2 Use of CHECK

	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

