NAG Library Routine Document
 F11DBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F11DBF solves a system of linear equations involving the incomplete $L U$ preconditioning matrix generated by F11DAF.

2 Specification

```
SUBROUTINE FIIDBF (TRANS, N, A, LA, IROW, ICOL, IPIVP, IPIVQ, ISTR,
        IDIAG, CHECK, Y, X, IFAIL)
INTEGER N, LA, IROW(LA), ICOL(LA), IPIVP(N), IPIVQ(N),
        ISTR(N+1), IDIAG(N), IFAIL
REAL (KIND=nag_wp) A(LA), Y(N), X(N)
CHARACTER(1) TRANS, CHECK
```


3 Description

F11DBF solves a system of linear equations

$$
M x=y, \quad \text { or } \quad M^{\mathrm{T}} x=y
$$

according to the value of the parameter TRANS, where the matrix $M=P L D U Q$, corresponds to an incomplete $L U$ decomposition of a sparse matrix stored in coordinate storage (CS) format (see Section 2.1.1 in the F11 Chapter Introduction), as generated by F11DAF.

In the above decomposition L is a lower triangular sparse matrix with unit diagonal elements, D is a diagonal matrix, U is an upper triangular sparse matrix with unit diagonal elements and, P and Q are permutation matrices. L, D and U are supplied to F11DBF through the matrix

$$
C=L+D^{-1}+U-2 I
$$

which is an N by N sparse matrix, stored in CS format, as returned by F11DAF. The permutation matrices P and Q are returned from F11DAF via the arrays IPIVP and IPIVQ.

It is envisaged that a common use of F11DBF will be to carry out the preconditioning step required in the application of F11BEF to sparse linear systems. F11DBF is used for this purpose by the Black Box routine F11DCF.
F11DBF may also be used in combination with F11DAF to solve a sparse system of linear equations directly (see Section 9.5 in F11DAF). This use of F11DBF is demonstrated in Section 10.

4 References

None.

5 Parameters

1: TRANS - CHARACTER(1)
Input
On entry: specifies whether or not the matrix M is transposed.
TRANS $=$ ' N '
$M x=y$ is solved.

```
TRANS \(=\) ' \(\mathrm{T}^{\prime}\)
    \(M^{\mathrm{T}} x=y\) is solved.
```

Constraint: TRANS $=$ ' N ' or ' T '.
N - INTEGER
On entry: n, the order of the matrix M. This must be the same value as was supplied in the preceding call to F11DAF.

Constraint: $\mathrm{N} \geq 1$.
$\mathrm{A}(\mathrm{LA})$ - REAL (KIND=nag_wp) array Input On entry: the values returned in the array A by a previous call to F11DAF.

4: LA - INTEGER
Input
On entry: the dimension of the arrays A, IROW and ICOL as declared in the (sub)program from which F11DBF is called. This must be the same value returned by the preceding call to F11DAF.

IROW(LA) - INTEGER array Input
ICOL(LA) - INTEGER array Input
$\operatorname{IPIVP}(\mathrm{N})-$ INTEGER array Input
$\operatorname{IPIVQ}(\mathrm{N})$ - INTEGER array Input
$\operatorname{ISTR}(\mathrm{N}+1)$ - INTEGER array Input
10: $\operatorname{IDIAG}(\mathrm{N})$ - INTEGER array Input
On entry: the values returned in arrays IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG by a previous call to F11DAF.

11: CHECK - CHARACTER(1)
Input
On entry: specifies whether or not the CS representation of the matrix M should be checked.
CHECK $=$ 'C'
Checks are carried on the values of N, IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG.

CHECK $=$ ' N '

None of these checks are carried out.
See also Section 9.2.
Constraint: CHECK $=$ ' C ' or ' N '.
$\mathrm{Y}(\mathrm{N})$ - REAL (KIND=nag_wp) array Input
On entry: the right-hand side vector y.
13: $\quad \mathrm{X}(\mathrm{N})-$ REAL (KIND=nag_wp) array
Output
On exit: the solution vector x.
14: IFAIL - INTEGER
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
IFAIL $=1$
On entry, TRANS $\neq \mathrm{N}^{\prime} \mathrm{N}^{\prime}$ or ' T ',
or \quad CHECK $\neq{ }^{\prime} \mathrm{C}^{\prime}$ or ' N '.
IFAIL $=2$
On entry, $\mathrm{N}<1$.
IFAIL $=3$
On entry, the CS representation of the preconditioning matrix M is invalid. Further details are given in the error message. Check that the call to F11DBF has been preceded by a valid call to F11DAF and that the arrays A, IROW, ICOL, IPIVP, IPIVQ, ISTR and IDIAG have not been corrupted between the two calls.

IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

If TRANS $=$ ' N ' the computed solution x is the exact solution of a perturbed system of equations $(M+\delta M) x=y$, where

$$
|\delta M| \leq c(n) \epsilon P|L\|D\| U| Q
$$

$c(n)$ is a modest linear function of n, and ϵ is the machine precision. An equivalent result holds when TRANS $=$ ' T '.

8 Parallelism and Performance

Not applicable.

9 Further Comments

9.1 Timing

The time taken for a call to F11DBF is proportional to the value of NNZC returned from F11DAF.

9.2 Use of CHECK

It is expected that a common use of F11DBF will be to carry out the preconditioning step required in the application of F11BEF to sparse linear systems. In this situation F11DBF is likely to be called many times with the same matrix M. In the interests of both reliability and efficiency, you are recommended to set CHECK = 'C' for the first of such calls, and for all subsequent calls set CHECK $=$ ' N '.

10 Example

This example reads in a sparse nonsymmetric matrix A and a vector y. It then calls F11DAF, with LFILL $=-1$ and DTOL $=0.0$, to compute the complete $L U$ decomposition

$$
A=P L D U Q
$$

Finally it calls F11DBF to solve the system

$$
P L D U Q x=y .
$$

10.1 Program Text

Program flldbfe

```
    F11DBF Example Program Text
```

 Mark 25 Release. NAG Copyright 2014.
 .. Use Statements ..
 Use nag_library, Only: flldaf, flldbf, nag_wp
 .. Implicit None Statement ..
 Implicit None
 ! .. Parameters ..
Integer, Parameter : $:$ nin $=5$, nout $=6$
! .. Local Scalars ..
Real (Kind=nag_wp) :: dtol
Integer :: i, ifail, la, lfill, liwork, n, nnz, \&
Character (1) :: check, milu, pstrat, trans
! .. Local Arrays . .
Real (Kind=nag_wp), Allocatable :: a(:), x(:), y(:)
Integer, Allocatable : icol(:), idiag(:), ipivp(:), \&
ipivq(:), irow(:), istr(:), iwork(:)
! .. Executable Statements ..
Write (nout,*) 'F11DBF Example Program Results'
Write (nout,*)
! Skip heading in data file
Read (nin,*)
! Read order of matrix and number of non-zero entries
Read (nin,*) n
Read (nin,*) nnz
$1 \mathrm{a}=2 \mathrm{*}_{\mathrm{nnz}}$
liwork $=7 *$ n +2
Allocate (a(la), x(n),y(n),icol(la),idiag(n),ipivp(n),ipivq(n),irow(la), \&
istr(n+1), iwork(liwork))
! Read the matrix A
Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)
End Do
! Read the vector y
Read (nin,*) y(1:n)
$!$
Write (nout,*) ' Solution of linear system'
Write (nout,'(E16.4)') $x(1: n)$
End If
End Program flldbfe

10.2 Program Data

```
F11DBF Example Program Data
4 N
1. 1 2
1. 1 3
-1. 2 1
2. 2 3
2. 2 4
3. 3}
-2. 3 4
1. 4 1
-2. 4 2
1. 4 4 3 A I I , IROW(I), ICOL(I), I=1,\ldots,NNZ
5.0 13.0 -5.0 4.0 Y(I), I=1,\ldots,N
```


10.3 Program Results

```
F11DBF Example Program Results
    Solution of linear system
        0.1000E+01
        0.2000E+01
        0.3000E+01
    0.4000E+01
```

