FO08 — Least-squares and Eigenvalue Problems (LAPACK) FOSNFF

NAG Library Routine Document
FOSNFF (DORGHR)

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

FOSNFF (DORGHR) generates the real orthogonal matrix) which was determined by FOSNEF
(DGEHRD) when reducing a real general matrix A to Hessenberg form.

2 Specification

SUBROUTINE FO8NFF (N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER N, ILO, IHI, LDA, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1l,LWORK))

The routine may be called by its LAPACK name dorghr.

3 Description

FOSNFF (DORGHR) is intended to be used following a call to FOSNEF (DGEHRD), which reduces a
real general matrix A to upper Hessenberg form H by an orthogonal similarity transformation:
A = QHQ". FOSNEF (DGEHRD) represents the matrix (Q as a product of iy; — i1, elementary reflectors.
Here i), and ip; are values determined by FOSNHF (DGEBAL) when balancing the matrix; if the matrix
has not been balanced, 7;, = 1 and iy = n.

This routine may be used to generate () explicitly as a square matrix.) has the structure:

I 0 0
Q=10 Qn 0
0 0 I

where (),; occupies rows and columns ¢, to p;.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Parameters

1: N — INTEGER Input
On entry: n, the order of the matrix Q.
Constraint: N > 0.

ILO — INTEGER Input
IHI — INTEGER Input
On entry: these must be the same parameters ILO and IHI, respectively, as supplied to FOSNEF
(DGEHRD).
Constraints:

if N>0, 1 <ILO < IHI <N;
if N=0, ILO =1 and THI = 0.

Mark 25 FOSNFF.1

FOSNFF NAG Library Manual

4: A(LDA, x) — REAL (KIND=nag_wp) array Input/Output
Note: the second dimension of the array A must be at least max(1,N).

On entry: details of the vectors which define the elementary reflectors, as returned by FOSNEF
(DGEHRD).

On exit: the n by n orthogonal matrix Q.

5: LDA — INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which FOSNFF
(DORGHR) is called.

Constraint: LDA > max(1,N).

6: TAU(x) — REAL (KIND=nag_wp) array Input
Note: the dimension of the array TAU must be at least max(1,N — 1).
On entry: further details of the elementary reflectors, as returned by FOSNEF (DGEHRD).

7: WORK (max(1,LWORK)) — REAL (KIND=nag_wp) array Workspace
On exit: if INFO = 0, WORK(1) contains the minimum value of LWORK required for optimal
performance.

8: LWORK - INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which FOSNFF
(DORGHR) is called, unless LWORK = —1, in which case a workspace query is assumed and the
routine only calculates the optimal dimension of WORK (using the formula given below).

Suggested value: for optimal performance LWORK should be at least (IHI — ILO) X nb, where nb
is the block size.

Constraint: LWORK > max(1,IHI — ILO) or LWORK = —1.

9: INFO — INTEGER Output

On exit: INFO = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO = —i, argument ¢ had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7 Accuracy
The computed matrix) differs from an exactly orthogonal matrix by a matrix F such that
1Ell, = O(e),

where € is the machine precision.

8 Parallelism and Performance

FOSNFF (DORGHR) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

FOSNFF (DORGHR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

FOSNFF.2 Mark 25

FO08 — Least-squares and Eigenvalue Problems (LAPACK) FOSNFF

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately %q3, where g = ip; — 0.

The complex analogue of this routine is FOSNTF (ZUNGHR).

10 Example
This example computes the Schur factorization of the matrix A, where

0.35 045 -0.14 -0.17
0.09 0.07 —-0.54 0.35
—-0.44 -033 —-0.03 0.17
025 -032 -0.13 0.11

A:

Here A is general and must first be reduced to Hessenberg form by FOSNEF (DGEHRD). The program
then calls FOSNFF (DORGHR) to form (), and passes this matrix to FOSPEF (DHSEQR) which
computes the Schur factorization of A.

10.1 Program Text
Program f£08nffe

! FOSBNFF Example Program Text
! Mark 25 Release. NAG Copyright 2014.

! .. Use Statements
Use nag_library, Only: dgehrd, dgemm, dhseqr, dlange => fOo6raf, dorghr, &
nag_wp, x02ajf, xO4caf
! .. Implicit None Statement
Implicit None

! .. Parameters
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars
Real (Kind=nag_wp) :: alpha, beta, norm
Integer :: i, ifail, info, 1lda, 1ldc, 1ldd, 1ldz, &

lwork, n
! .. Local Arrays
Real (Kind=nag_wp), Allocatable :: a(:,:), c(:,:), d(:,:), tau(:), &
wi(:), work(:), wr(:), z(:,:)
! .. Executable Statements
Write (nout,*) ’'FO8NFF Example Program Results’
! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n

ldz = n

ldc = n

l1dd = n

lwork = 64*(n-1)

Allocate (a(lda,n),c(ldc,n),d(1ldd,n),tau(n),wi(n),work(lwork),wr(n), &
z(1ldz,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Copy A into D.
d(l:n,1:n) = a(l:n,1:n)

Write (nout,?*)
Flush (nout)

Mark 25 FOSNFF.3

FOSNFF NAG Library Manual

! Print Matrix A

! ifail: behaviour on error exit

! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call x04caf(’'General’,’ ’',n,n,a,lda,’'Matrix A’ ,ifail)

Write (nout,*)
Flush (nout)

! Reduce A to upper Hessenberg form H = (Q**T)*A*Q
! The NAG name equivalent of dgehrd is fO08nef
Call dgehrd(n,1,n,a,lda,tau,work,lwork,info)

! Copy A into 2
z(l:n,1l:n) = a(l:n,1l:n)

! Form Q explicitly, storing the result in Z
! The NAG name equivalent of dorghr is f08nff
Call dorghr(n,1l,n,z,1dz,tau,work,lwork,info)

! Calculate the Schur factorization of H = Y*T*(Y**T) and form
! QO*Y explicitly, storing the result in Z

! Note that A = Z*T*(Z**T), where Z = Q*Y
! The NAG name equivalent of dhseqr is f08pef

Call dhseqr(’Schur form’,’Vectors’,n,1l,n,a,lda,wr,wi,z,ldz,work,lwork, &

info)

! Compute A - Z*T*Z"T from the factorization of A and store in matrix D.

! The NAG name equivelent of dgemm is fO6yaf.
alpha = 1.0_nag_wp
beta = 0.0_nag_wp
Call dgemm(’'N’,’'N’,n,n,n,alpha,z,1dz,a,lda,beta,c,1ldc)
alpha = -1.0_nag_wp
beta = 1.0_nag_wp
Call dgemm(’'N’,’T’,n,n,n,alpha,c,ldc,z,1dz,beta,d,1dd)

! Find norm of difference matrix D and warn if it is too large;
! fOo6raf is the NAG name equivalent of the LAPACK auxiliary dlange
norm = dlange(’O’,1dd,n,d,1ldd,work)
If (norm>x02ajf()**0.8_nag_wp) Then
Write (nout,*) ’'Norm of A-(Z*T*Z"T) is much greater than 0.’
Write (nout,*) ’Schur factorization has failed.’

Else
! Print eigenvalues.
Write (nout,*) ’'Eigenvalues’
Write (nout,99999)(’ (',wr(i),’,’,wi(i),’)’,i=1,n)
End If

99999 Format (1X,A,F8.4,A,F8.4,R)

End Program fO8nffe

10.2 Program Data

FOSNFF Example Program Data
4 :Value of N

0.35 0.45 -0.14 -0.17
0.09 0.07 -0.54 0.35
-0.44 -0.33 -0.03 0.17
0.25 -0.32 -0.13 0.11 :End of matrix A

FOSNFF.4

Mark 25

FO08 — Least-squares and Eigenvalue Problems (LAPACK)

10.3 Program Results

FOBNFF Example Program Results

Matrix A

1 2
1 0.3500 0.4500 -0
2 0.0900 0.0700 -0
3 -=0.4400 -0.3300 -0.
4 0.2500 -0.3200 -0.

Eigenvalues

(0.
(.0994, 0.4008
(-0.

(.1007, 0.0000

7995, 0.0000

0994, -0.4008

—_— — — —

3

.1400
.5400

0300
1300

OO OO

4

.1700
.3500
.1700
.1100

FOSNFF

Mark 25

FOSNFFES (last)

	F08NFF (DORGHR)
	1 Purpose
	2 Specification
	3 Description
	4 References
	Golub and Van Loan (1996)

	5 Parameters
	N
	ILO
	IHI
	A
	LDA
	TAU
	WORK
	LWORK
	INFO

	6 Error Indicators and Warnings
	INFO<0

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

