FO08 — Least-squares and Eigenvalue Problems (LAPACK) FOSNFF

NAG Library Routine Document
FOSNFF (DORGHR)

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

FOSNFF (DORGHR) generates the real orthogonal matrix ) which was determined by FOSNEF
(DGEHRD) when reducing a real general matrix A to Hessenberg form.

2 Specification

SUBROUTINE FO8NFF (N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER N, ILO, IHI, LDA, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), TAU(*), WORK(max(1l,LWORK))

The routine may be called by its LAPACK name dorghr.

3 Description

FOSNFF (DORGHR) is intended to be used following a call to FOSNEF (DGEHRD), which reduces a
real general matrix A to upper Hessenberg form H by an orthogonal similarity transformation:
A = QHQ". FOSNEF (DGEHRD) represents the matrix (Q as a product of iy; — i1, elementary reflectors.
Here i), and ip; are values determined by FOSNHF (DGEBAL) when balancing the matrix; if the matrix
has not been balanced, 7;, = 1 and iy = n.

This routine may be used to generate () explicitly as a square matrix. ) has the structure:

I 0 0
Q=10 Qn 0
0 0 I

where (),; occupies rows and columns ¢, to p;.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Parameters

1: N — INTEGER Input
On entry: n, the order of the matrix Q.
Constraint: N > 0.

ILO — INTEGER Input
IHI — INTEGER Input
On entry: these must be the same parameters ILO and IHI, respectively, as supplied to FOSNEF
(DGEHRD).
Constraints:

if N>0, 1 <ILO < IHI <N;
if N=0, ILO =1 and THI = 0.
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4: A(LDA, x) — REAL (KIND=nag_wp) array Input/Output
Note: the second dimension of the array A must be at least max(1,N).

On entry: details of the vectors which define the elementary reflectors, as returned by FOSNEF
(DGEHRD).

On exit: the n by n orthogonal matrix Q.

5: LDA — INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which FOSNFF
(DORGHR) is called.

Constraint: LDA > max(1,N).

6: TAU(x) — REAL (KIND=nag_wp) array Input
Note: the dimension of the array TAU must be at least max(1,N — 1).
On entry: further details of the elementary reflectors, as returned by FOSNEF (DGEHRD).

7: WORK (max(1,LWORK)) — REAL (KIND=nag_wp) array Workspace
On exit: if INFO = 0, WORK(1) contains the minimum value of LWORK required for optimal
performance.

8: LWORK - INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which FOSNFF
(DORGHR) is called, unless LWORK = —1, in which case a workspace query is assumed and the
routine only calculates the optimal dimension of WORK (using the formula given below).

Suggested value: for optimal performance LWORK should be at least (IHI — ILO) X nb, where nb
is the block size.

Constraint: LWORK > max(1,IHI — ILO) or LWORK = —1.

9: INFO — INTEGER Output

On exit: INFO = 0 unless the routine detects an error (see Section 6).

6  Error Indicators and Warnings

INFO < 0

If INFO = —i, argument ¢ had an illegal value. An explanatory message is output, and execution
of the program is terminated.

7  Accuracy
The computed matrix ) differs from an exactly orthogonal matrix by a matrix F such that
1Ell, = O(e),

where € is the machine precision.

8 Parallelism and Performance

FOSNFF (DORGHR) is threaded by NAG for parallel execution in multithreaded implementations of the
NAG Library.

FOSNFF (DORGHR) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.
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Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately %q3, where g = ip; — 0.

The complex analogue of this routine is FOSNTF (ZUNGHR).

10 Example
This example computes the Schur factorization of the matrix A, where

0.35 045 -0.14 -0.17
0.09 0.07 —-0.54 0.35
—-0.44 -033 —-0.03 0.17
025 -032 -0.13 0.11

A:

Here A is general and must first be reduced to Hessenberg form by FOSNEF (DGEHRD). The program
then calls FOSNFF (DORGHR) to form (), and passes this matrix to FOSPEF (DHSEQR) which
computes the Schur factorization of A.

10.1 Program Text
Program f£08nffe

! FOSBNFF Example Program Text
! Mark 25 Release. NAG Copyright 2014.

! .. Use Statements
Use nag_library, Only: dgehrd, dgemm, dhseqr, dlange => fOo6raf, dorghr, &
nag_wp, x02ajf, xO4caf
! .. Implicit None Statement
Implicit None

! .. Parameters
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars
Real (Kind=nag_wp) :: alpha, beta, norm
Integer :: i, ifail, info, 1lda, 1ldc, 1ldd, 1ldz, &

lwork, n
! .. Local Arrays
Real (Kind=nag_wp), Allocatable :: a(:,:), c(:,:), d(:,:), tau(:), &
wi(:), work(:), wr(:), z(:,:)
! .. Executable Statements
Write (nout,*) ’'FO8NFF Example Program Results’
! Skip heading in data file
Read (nin,*)
Read (nin,*) n

lda = n

ldz = n

ldc = n

l1dd = n

lwork = 64*(n-1)

Allocate (a(lda,n),c(ldc,n),d(1ldd,n),tau(n),wi(n),work(lwork),wr(n), &
z(1ldz,n))

! Read A from data file
Read (nin,*)(a(i,1:n),i=1,n)

! Copy A into D.
d(l:n,1:n) = a(l:n,1:n)

Write (nout,?*)
Flush (nout)
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! Print Matrix A

! ifail: behaviour on error exit

! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call x04caf(’'General’,’ ’',n,n,a,lda,’'Matrix A’ ,ifail)

Write (nout,*)
Flush (nout)

! Reduce A to upper Hessenberg form H = (Q**T)*A*Q
! The NAG name equivalent of dgehrd is fO08nef
Call dgehrd(n,1,n,a,lda,tau,work,lwork,info)

! Copy A into 2
z(l:n,1l:n) = a(l:n,1l:n)

! Form Q explicitly, storing the result in Z
! The NAG name equivalent of dorghr is f08nff
Call dorghr(n,1l,n,z,1dz,tau,work,lwork,info)

! Calculate the Schur factorization of H = Y*T*(Y**T) and form
! QO*Y explicitly, storing the result in Z

! Note that A = Z*T*(Z**T), where Z = Q*Y
! The NAG name equivalent of dhseqr is f08pef

Call dhseqr(’Schur form’,’Vectors’,n,1l,n,a,lda,wr,wi,z,ldz,work,lwork, &

info)

! Compute A - Z*T*Z"T from the factorization of A and store in matrix D.

! The NAG name equivelent of dgemm is fO6yaf.
alpha = 1.0_nag_wp
beta = 0.0_nag_wp
Call dgemm(’'N’,’'N’,n,n,n,alpha,z,1dz,a,lda,beta,c,1ldc)
alpha = -1.0_nag_wp
beta = 1.0_nag_wp
Call dgemm(’'N’,’T’,n,n,n,alpha,c,ldc,z,1dz,beta,d,1dd)

! Find norm of difference matrix D and warn if it is too large;
! fOo6raf is the NAG name equivalent of the LAPACK auxiliary dlange
norm = dlange(’O’,1dd,n,d,1ldd,work)
If (norm>x02ajf()**0.8_nag_wp) Then
Write (nout,*) ’'Norm of A-(Z*T*Z"T) is much greater than 0.’
Write (nout,*) ’Schur factorization has failed.’

Else
! Print eigenvalues.
Write (nout,*) ’'Eigenvalues’
Write (nout,99999)(’ (',wr(i),’,’,wi(i),’)’,i=1,n)
End If

99999 Format (1X,A,F8.4,A,F8.4,R)

End Program fO8nffe

10.2 Program Data

FOSNFF Example Program Data
4 :Value of N

0.35 0.45 -0.14 -0.17
0.09 0.07 -0.54 0.35
-0.44 -0.33 -0.03 0.17
0.25 -0.32 -0.13 0.11 :End of matrix A
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10.3 Program Results

FOBNFF Example Program Results

Matrix A

1 2
1 0.3500 0.4500 -0
2 0.0900 0.0700 -0
3 -=0.4400 -0.3300 -0.
4 0.2500 -0.3200 -0.

Eigenvalues

( 0.
( .0994, 0.4008
( -0.

( .1007, 0.0000

7995, 0.0000

0994, -0.4008

—_— — — —

3

.1400
.5400

0300
1300

OO OO

4

.1700
.3500
.1700
.1100

FOSNFF
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