# NAG Library Routine Document <br> F08KEF (DGEBRD) 

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

## 1 Purpose

F08KEF (DGEBRD) reduces a real $m$ by $n$ matrix to bidiagonal form.

## 2 Specification

```
SUBROUTINE FO8KEF (M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, INFO)
INTEGER M, N, LDA, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), D(*), E (*), TAUQ(*), TAUP(*),
    WORK(max (1,LWORK))
```

The routine may be called by its LAPACK name dgebrd.

## 3 Description

F08KEF (DGEBRD) reduces a real $m$ by $n$ matrix $A$ to bidiagonal form $B$ by an orthogonal transformation: $A=Q B P^{\mathrm{T}}$, where $Q$ and $P^{\mathrm{T}}$ are orthogonal matrices of order $m$ and $n$ respectively. If $m \geq n$, the reduction is given by:

$$
A=Q\binom{B_{1}}{0} P^{\mathrm{T}}=Q_{1} B_{1} P^{\mathrm{T}}
$$

where $B_{1}$ is an $n$ by $n$ upper bidiagonal matrix and $Q_{1}$ consists of the first $n$ columns of $Q$.
If $m<n$, the reduction is given by

$$
A=Q\left(\begin{array}{ll}
B_{1} & 0
\end{array}\right) P^{\mathrm{T}}=Q B_{1} P_{1}^{\mathrm{T}}
$$

where $B_{1}$ is an $m$ by $m$ lower bidiagonal matrix and $P_{1}^{\mathrm{T}}$ consists of the first $m$ rows of $P^{\mathrm{T}}$.
The orthogonal matrices $Q$ and $P$ are not formed explicitly but are represented as products of elementary reflectors (see the F08 Chapter Introduction for details). Routines are provided to work with $Q$ and $P$ in this representation (see Section 9).

## 4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

## 5 Parameters

1: M - INTEGER
Input
On entry: $m$, the number of rows of the matrix $A$.
Constraint: $\mathrm{M} \geq 0$.
2: $\quad \mathrm{N}$ - INTEGER
Input
On entry: $n$, the number of columns of the matrix $A$.
Constraint: $\mathrm{N} \geq 0$.

3: $\quad \mathrm{A}(\mathrm{LDA}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Note: the second dimension of the array A must be at least $\max (1, \mathrm{~N})$.
On entry: the $m$ by $n$ matrix $A$.
On exit: if $m \geq n$, the diagonal and first superdiagonal are overwritten by the upper bidiagonal matrix $B$, elements below the diagonal are overwritten by details of the orthogonal matrix $Q$ and elements above the first superdiagonal are overwritten by details of the orthogonal matrix $P$.

If $m<n$, the diagonal and first subdiagonal are overwritten by the lower bidiagonal matrix $B$, elements below the first subdiagonal are overwritten by details of the orthogonal matrix $Q$ and elements above the diagonal are overwritten by details of the orthogonal matrix $P$.

4: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F08KEF (DGEBRD) is called.
Constraint: $\mathrm{LDA} \geq \max (1, \mathrm{M})$.
5: $\quad \mathrm{D}(*)-$ REAL (KIND $=$ nag_wp) array
Output
Note: the dimension of the array $D$ must be at least $\max (1, \min (M, N))$.
On exit: the diagonal elements of the bidiagonal matrix $B$.
6: $\quad \mathrm{E}(*)-$ REAL (KIND $=$ nag_wp) array
Output
Note: the dimension of the array $E$ must be at least $\max (1, \min (M, N)-1)$.
On exit: the off-diagonal elements of the bidiagonal matrix $B$.

7: $\quad$ TAUQ $(*)$ - REAL (KIND=nag_wp) array
Output
Note: the dimension of the array TAUQ must be at least $\max (1, \min (\mathrm{M}, \mathrm{N}))$.
On exit: further details of the orthogonal matrix $Q$.
8: $\quad \operatorname{TAUP}(*)-$ REAL (KIND=$=$ nag_wp $)$ array
Output
Note: the dimension of the array TAUP must be at least $\max (1, \min (\mathrm{M}, \mathrm{N}))$.
On exit: further details of the orthogonal matrix $P$.
9: $\quad \operatorname{WORK}(\max (1, \operatorname{LWORK}))-$ REAL (KIND=$=$ nag_wp $)$ array
Workspace
On exit: if INFO $=0$, WORK (1) contains the minimum value of LWORK required for optimal performance.

10: LWORK - INTEGER
Input
On entry: the dimension of the array WORK as declared in the (sub)program from which F08KEF (DGEBRD) is called.

If LWORK $=-1$, a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued.

Suggested value: for optimal performance, LWORK $\geq(\mathrm{M}+\mathrm{N}) \times n b$, where $n b$ is the optimal block size.

Constraint: LWORK $\geq \max (1, \mathrm{M}, \mathrm{N})$ or $\operatorname{LWORK}=-1$.
11: INFO - INTEGER
Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6 ).

## 6 Error Indicators and Warnings

INFO $<0$
If INFO $=-i$, argument $i$ had an illegal value. An explanatory message is output, and execution of the program is terminated.

## 7 Accuracy

The computed bidiagonal form $B$ satisfies $Q B P^{\mathrm{T}}=A+E$, where

$$
\|E\|_{2} \leq c(n) \epsilon\|A\|_{2}
$$

$c(n)$ is a modestly increasing function of $n$, and $\epsilon$ is the machine precision.
The elements of $B$ themselves may be sensitive to small perturbations in $A$ or to rounding errors in the computation, but this does not affect the stability of the singular values and vectors.

## 8 Parallelism and Performance

F08KEF (DGEBRD) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
F08KEF (DGEBRD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

## 9 Further Comments

The total number of floating-point operations is approximately $\frac{4}{3} n^{2}(3 m-n)$ if $m \geq n$ or $\frac{4}{3} m^{2}(3 n-m)$ if $m<n$.

If $m \gg n$, it can be more efficient to first call F08AEF (DGEQRF) to perform a $Q R$ factorization of $A$, and then to call F08KEF (DGEBRD) to reduce the factor $R$ to bidiagonal form. This requires approximately $2 n^{2}(m+n)$ floating-point operations.
If $m \ll n$, it can be more efficient to first call F08AHF (DGELQF) to perform an $L Q$ factorization of $A$, and then to call F08KEF (DGEBRD) to reduce the factor $L$ to bidiagonal form. This requires approximately $2 m^{2}(m+n)$ operations.

To form the orthogonal matrices $P^{\mathrm{T}}$ and/or $Q$ F08KEF (DGEBRD) may be followed by calls to F08KFF (DORGBR):
to form the $m$ by $m$ orthogonal matrix $Q$

```
CALL DORGBR('Q',M,M,N,A,LDA,TAUQ,WORK,LWORK,INFO)
```

but note that the second dimension of the array $A$ must be at least $M$, which may be larger than was required by F08KEF (DGEBRD);
to form the $n$ by $n$ orthogonal matrix $P^{\mathrm{T}}$
CALL DORGBR('P',N,N,M,A,LDA,TAUP,WORK,LWORK,INFO)
but note that the first dimension of the array A, specified by the parameter LDA, must be at least N, which may be larger than was required by F08KEF (DGEBRD).

To apply $Q$ or $P$ to a real rectangular matrix $C$, F08KEF (DGEBRD) may be followed by a call to F08KGF (DORMBR).
The complex analogue of this routine is F08KSF (ZGEBRD).

## 10 Example

This example reduces the matrix $A$ to bidiagonal form, where

$$
A=\left(\begin{array}{rrrr}
-0.57 & -1.28 & -0.39 & 0.25 \\
-1.93 & 1.08 & -0.31 & -2.14 \\
2.30 & 0.24 & 0.40 & -0.35 \\
-1.93 & 0.64 & -0.66 & 0.08 \\
0.15 & 0.30 & 0.15 & -2.13 \\
-0.02 & 1.03 & -1.43 & 0.50
\end{array}\right) .
$$

### 10.1 Program Text

```
    Program f08kefe
    FO8KEF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Use Statements ..
    Use nag_library, Only: dgebrd, nag_wp
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
    .. Local Scalars ..
    Integer :: i, info, lda, lwork, m, n
    .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: a(:,:), d(:), e(:), taup(:),
    tauq(:), work(:)
    .. Intrinsic Procedures ..
    Intrinsic :: min
    .. Executable Statements ..
    Write (nout,*) 'F08KEF Example Program Results'
    Skip heading in data file
    Read (nin,*)
    Read (nin,*) m, n
    lda = m
    lwork = 64*(m+n)
    Allocate (a(lda,n),d(n),e(n-1),taup(n),tauq(n),work(lwork))
! Read A from data file
    Read (nin,*)(a(i,1:n),i=1,m)
! Reduce A to bidiagonal form
! The NAG name equivalent of dgebrd is f08kef
    Call dgebrd(m,n,a,lda,d,e,tauq,taup,work,lwork,info)
! Print bidiagonal form
    Write (nout,*)
    Write (nout,*) 'Diagonal'
    Write (nout,99999) d(1:min(m,n))
    If (m>=n) Then
        Write (nout,*) 'Super-diagonal'
    Else
        Write (nout,*) 'Sub-diagonal'
    End If
    Write (nout,99999) e(1:min(m,n)-1)
99999 Format (1X,8F9.4)
    End Program f08kefe
```


### 10.2 Program Data

| F08KEF | Example Program Data |  |  |  |
| ---: | ---: | ---: | ---: | ---: |
| 6 | 4 |  |  |  |
| -0.57 | -1.28 | -0.39 | 0.25 |  |
| -1.93 | 1.08 | -0.31 | -2.14 |  |

### 10.3 Program Results

```
FO8KEF Example Program Results
Diagonal
    3.6177 2.4161 -1.9213 -1.4265
Super-diagonal
    1.2587 1.5262 -1.1895
```

