NAG Library Routine Document

 F08APF (ZGEQRT)

 F08APF (ZGEQRT)}

Abstract

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F08APF (ZGEQRT) recursively computes, with explicit blocking, the $Q R$ factorization of a complex m by n matrix.

2 Specification

```
SUBROUTINE FO8APF (M, N, NB, A, LDA, T, LDT, WORK, INFO)
INTEGER M, N, NB, LDA, LDT, INFO
COMPLEX (KIND=nag_wp) A(LDA,*), T(LDT,*), WORK(NB*N)
```

The routine may be called by its LAPACK name zgeqrt.

3 Description

F08APF (ZGEQRT) forms the $Q R$ factorization of an arbitrary rectangular complex m by n matrix. No pivoting is performed.

It differs from F08ASF (ZGEQRF) in that it: requires an explicit block size; stores reflector factors that are upper triangular matrices of the chosen block size (rather than scalars); and recursively computes the $Q R$ factorization based on the algorithm of Elmroth and Gustavson (2000).
If $m \geq n$, the factorization is given by:

$$
A=Q\binom{R}{0}
$$

where R is an n by n upper triangular matrix (with real diagonal elements) and Q is an m by m unitary matrix. It is sometimes more convenient to write the factorization as

$$
A=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\binom{R}{0}
$$

which reduces to

$$
A=Q_{1} R
$$

where Q_{1} consists of the first n columns of Q, and Q_{2} the remaining $m-n$ columns.
If $m<n, R$ is upper trapezoidal, and the factorization can be written

$$
A=Q\left(\begin{array}{ll}
R_{1} & R_{2}
\end{array}\right)
$$

where R_{1} is upper triangular and R_{2} is rectangular.
The matrix Q is not formed explicitly but is represented as a product of $\min (m, n)$ elementary reflectors (see the F08 Chapter Introduction for details). Routines are provided to work with Q in this representation (see Section 9).

Note also that for any $k<n$, the information returned represents a $Q R$ factorization of the first k columns of the original matrix A.

4 References

Elmroth E and Gustavson F (2000) Applying Recursion to Serial and Parallel $Q R$ Factorization Leads to Better Performance IBM Journal of Research and Development. (Volume 44) 4 605-624

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University Press, Baltimore

5 Parameters

1: M - INTEGER Input
On entry: m, the number of rows of the matrix A.
Constraint: $\mathrm{M} \geq 0$.
2: N - INTEGER Input
On entry: n, the number of columns of the matrix A.
Constraint: $\mathrm{N} \geq 0$.
3: NB - INTEGER
Input
On entry: the explicitly chosen block size to be used in computing the $Q R$ factorization. See Section 9 for details.

Constraints:

$$
\begin{aligned}
& \mathrm{NB} \geq 1 \text {; } \\
& \text { if } \min (M, N)>0, N B \leq \min (M, N)
\end{aligned}
$$

4: $\mathrm{A}(\mathrm{LDA}, *)$ - COMPLEX (KIND=nag_wp) array
Input/Output
Note: the second dimension of the array A must be at least $\max (1, N)$.
On entry: the m by n matrix A.
On exit: if $m \geq n$, the elements below the diagonal are overwritten by details of the unitary matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n upper triangular matrix R.
If $m<n$, the strictly lower triangular part is overwritten by details of the unitary matrix Q and the remaining elements are overwritten by the corresponding elements of the m by n upper trapezoidal matrix R.

The diagonal elements of R are real.
5: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F08APF (ZGEQRT) is called.

Constraint: $\mathrm{LDA} \geq \max (1, \mathrm{M})$.
6: T(LDT, *) - COMPLEX (KIND=nag_wp) array
Output
Note: the second dimension of the array T must be at least $\max (1, \min (M, N))$.
On exit: further details of the unitary matrix Q. The number of blocks is $b=\left\lceil\frac{k}{\mathrm{NB}}\right\rceil$, where $k=\min (m, n)$ and each block is of order NB except for the last block, which is of order $k-(b-1) \times$ NB. For each of the blocks, an upper triangular block reflector factor is computed: $\boldsymbol{T}_{1}, \boldsymbol{T}_{2}, \ldots, \boldsymbol{T}_{b}$. These are stored in the NB by n matrix T as $\boldsymbol{T}=\left[\boldsymbol{T}_{1}\left|\boldsymbol{T}_{2}\right| \ldots \mid \boldsymbol{T}_{b}\right]$.

7: LDT - INTEGER Input
On entry: the first dimension of the array T as declared in the (sub)program from which F08APF (ZGEQRT) is called.
Constraint: LDT \geq NB.
8: $\quad \operatorname{WORK}(\mathrm{NB} \times \mathrm{N})-\operatorname{COMPLEX}(\mathrm{KIND}=$ nag_wp $)$ array
Workspace
9: INFO - INTEGER
Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO <0
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix $(A+E)$, where

$$
\|E\|_{2}=O(\epsilon)\|A\|_{2}
$$

and ϵ is the machine precision.

8 Parallelism and Performance

F08APF (ZGEQRT) is not threaded by NAG in any implementation.
F08APF (ZGEQRT) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of real floating-point operations is approximately $\frac{8}{3} n^{2}(3 m-n)$ if $m \geq n$ or $\frac{8}{3} m^{2}(3 n-m)$ if $m<n$.

To apply Q to an arbitrary complex rectangular matrix C, F08APF (ZGEQRT) may be followed by a call to F08AQF (ZGEMQRT). For example,

```
CALL ZGEMQRT('Left','Conjugate Transpose',M,P,MIN(M,N),NB,A,LDA, &
    T,LDT,C,LDC,WORK,INFO)
```

forms $C=Q^{\mathrm{H}} C$, where C is m by p.
To form the unitary matrix Q explicitly, simply initialize the m by matrix C to the identity matrix and form $C=Q C$ using F08AQF (ZGEMQRT) as above.

The block size, NB, used by F08APF (ZGEQRT) is supplied explicitly through the interface. For moderate and large sizes of matrix, the block size can have a marked effect on the efficiency of the algorithm with the optimal value being dependent on problem size and platform. A value of $\mathrm{NB}=64 \ll \min (m, n)$ is likely to achieve good efficiency and it is unlikely that an optimal value would exceed 340.

To compute a $Q R$ factorization with column pivoting, use F08BPF (ZTPQRT) or F08BSF (ZGEQPF).

The real analogue of this routine is F08ABF (DGEQRT).

10 Example

This example solves the linear least squares problems

$$
\operatorname{minimize}\left\|A x_{i}-b_{i}\right\|_{2}, \quad i=1,2
$$

where b_{1} and b_{2} are the columns of the matrix B,

$$
A=\left(\begin{array}{rrrr}
0.96-0.81 i & -0.03+0.96 i & -0.91+2.06 i & -0.05+0.41 i \\
-0.98+1.98 i & -1.20+0.19 i & -0.66+0.42 i & -0.81+0.56 i \\
0.62-0.46 i & 1.01+0.02 i & 0.63-0.17 i & -1.11+0.60 i \\
-0.37+0.38 i & 0.19-0.54 i & -0.98-0.36 i & 0.22-0.20 i \\
0.83+0.51 i & 0.20+0.01 i & -0.17-0.46 i & 1.47+1.59 i \\
1.08-0.28 i & 0.20-0.12 i & -0.07+1.23 i & 0.26+0.26 i
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{rr}
-2.09+1.93 i & 3.26-2.70 i \\
3.34-3.53 i & -6.22+1.16 i \\
-4.94-2.04 i & 7.94-3.13 i \\
0.17+4.23 i & 1.04-4.26 i \\
-5.19+3.63 i & -2.31-2.12 i \\
0.98+2.53 i & -1.39-4.05 i
\end{array}\right) .
$$

10.1 Program Text

```
Program f08apfe
    F08APF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Use Statements ..
    Use nag_library, Only: dznrm2, nag_wp, x04dbf, zgemqrt, zgeqrt, ztrtrs
    . Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter \(:: \operatorname{nbmax}=64, \mathrm{nin}=5\), nout \(=6\)
    .. Local Scalars ..
    Integer : : i, ifail, info, j, lda, ldb, ldt, \&
                        lwork, m, n, nb, nrhs
    . Local Arrays ..
    Complex (Kind=nag_wp), Allocatable : : a(:,:), b(:,:), t(:, ), work(:)
    Real (Kind=nag_wp), Allocatable : : rnorm(:)
    Character (1) : : clabs(1), rlabs(1)
    .. Intrinsic Procedures ..
    Intrinsic : : max, min
    .. Executable Statements ..
    Write (nout,*) 'F08APF Example Program Results'
    Write (nout,*)
    Flush (nout)
    Skip heading in data file
    Read (nin,*)
    Read (nin,*) m, n, nrhs
    lda \(=m\)
    \(1 \mathrm{db}=\mathrm{m}\)
    \(\mathrm{nb}=\min (\mathrm{m}, \mathrm{n}, \mathrm{nbmax})\)
    ldt \(=\mathrm{nb}\)
    lwork \(=n b * \max (m, n)\)
    Allocate (a(lda,n),b(ldb,nrhs),t(ldt,min(m,n)), work(lwork), rnorm(nrhs))
    Read \(A\) and \(B\) from data file
    Read (nin,*) (a(i, 1:n), i=1,m)
    Read (nin,*) (b(i,1:nrhs),i=1,m)
```

```
! Compute the QR factorization of A
    The NAG name equivalent of zgeqrf is fO8apf
    Call zgeqrt(m,n,nb,a,lda,t,ldt,work,info)
    Compute C = (C1) = (Q**H)*B, storing the result in B
    (C2)
    The NAG name equivalent of zgemqrt is f08aqf
    Call zgemqrt('Left','Conjugate transpose',m,nrhs,n,nb,a,lda,t,ldt,b,ldb, &
    work,info)
    Compute least-squares solutions by backsubstitution in
    R*X = C1
    The NAG name equivalent of ztrtrs is f07tsf
    Call ztrtrs('Upper','No transpose','Non-Unit',n,nrhs,a,lda,b,ldb,info)
    If (info>0) Then
    Write (nout,*) 'The upper triangular factor, R, of A is singular, '
    Write (nout,*) 'the least squares solution could not be computed'
    Else
    Print least-squares solutions
    ifail: behaviour on error exit
                    =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
    ifail = 0
    Call x04dbf('General',' ',n,nrhs,b,ldb,'Bracketed','F7.4', &
        'Least-squares solution(s)','Integer',rlabs,'Integer',clabs,80,0, &
        ifail)
    Compute and print estimates of the square roots of the residual
    sums of squares
    The NAG name equivalent of dznrm2 is f06jjf
    Do j = 1, nrhs
        rnorm(j) = dznrm2(m-n,b(n+1,j),1)
    End Do
    Write (nout,*)
    Write (nout,*) 'Square root(s) of the residual sum(s) of squares'
    Write (nout,99999) rnorm(1:nrhs)
End If
```

```
99999 Format (3X,1P,7E11.2)
```

99999 Format (3X,1P,7E11.2)
End Program f08apfe

```

\subsection*{10.2 Program Data}

F08APF Example Program Data


\subsection*{10.3 Program Results}
```

FO8APF Example Program Results
Least-squares solution(s)
1 (-0.5044,-1.2179) (0.7629, 1.4529)
2 (-2.4281, 2.8574) (5.1570,-3.6089)
3 (1.4872,-2.1955) (-2.6518, 2.1203)
4(0.4537, 2.6904) (-2.7606, 0.3318)
Square root(s) of the residual sum(s) of squares
6.88E-02 1.87E-01

```
```

