NAG Library Routine Document F07TEF (DTRTRS)

[^0]
1 Purpose

F07TEF (DTRTRS) solves a real triangular system of linear equations with multiple right-hand sides, $A X=B$ or $A^{\mathrm{T}} X=B$.

2 Specification

```
SUBROUTINE FO7TEF (UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, INFO)
INTEGER N, NRHS, LDA, LDB, INFO
REAL (KIND=nag_wp) A(LDA,*), B (LDB,*)
CHARACTER(1) UPLO, TRANS, DIAG
```

The routine may be called by its LAPACK name dtrtrs.

3 Description

F07TEF (DTRTRS) solves a real triangular system of linear equations $A X=B$ or $A^{\mathrm{T}} X=B$.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore
Higham N J (1989) The accuracy of solutions to triangular systems SIAM J. Numer. Anal. 26 1252-1265

5 Parameters

1: UPLO - CHARACTER(1) Input
On entry: specifies whether A is upper or lower triangular.
$\mathrm{UPLO}=$ ' U '
A is upper triangular.

$$
\mathrm{UPLO}=\text { 'L' }
$$

A is lower triangular.
Constraint: UPLO = 'U' or 'L'.
2: TRANS - CHARACTER(1)
On entry: indicates the form of the equations.
TRANS $=$ ' N '
The equations are of the form $A X=B$.
TRANS $=$ ' T ' or ' C^{\prime}
The equations are of the form $A^{\mathrm{T}} X=B$.
Constraint: TRANS $=$ ' N ', ' T ' or ' C '.

3: DIAG - CHARACTER(1)
Input
On entry: indicates whether A is a nonunit or unit triangular matrix.
DIAG $=$ ' ${ }^{\prime}$ '
A is a nonunit triangular matrix.
DIAG $=$ ' U^{\prime}
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to be 1 .
Constraint: DIAG $=$ ' N ' or ' U '.

4: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the order of the matrix A.
Constraint: $\mathrm{N} \geq 0$.

5: NRHS - INTEGER
Input
On entry: r, the number of right-hand sides.
Constraint: NRHS ≥ 0.

6: $\mathrm{A}(\mathrm{LDA}, *)$ - REAL (KIND=nag_wp) array
Input
Note: the second dimension of the array A must be at least $\max (1, \mathrm{~N})$.
On entry: the n by n triangular matrix A.
If $\mathrm{UPLO}={ }^{\prime} \mathrm{U}$ ', A is upper triangular and the elements of the array below the diagonal are not referenced.

If UPLO $=$ 'L', A is lower triangular and the elements of the array above the diagonal are not referenced.

If DIAG $=$ ' U ', the diagonal elements of A are assumed to be 1 , and are not referenced.
7: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F07TEF (DTRTRS) is called.
Constraint: $\operatorname{LDA} \geq \max (1, \mathrm{~N})$.
8: $\quad \mathrm{B}(\mathrm{LDB}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
Note: the second dimension of the array B must be at least max(1, NRHS).
On entry: the n by r right-hand side matrix B.
On exit: the n by r solution matrix X.
9: LDB - INTEGER
Input
On entry: the first dimension of the array B as declared in the (sub)program from which F07TEF
(DTRTRS) is called.
Constraint: $\operatorname{LDB} \geq \max (1, \mathrm{~N})$.
10: INFO - INTEGER
Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

$\mathrm{INFO}<0$
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

INFO >0
Element \langle value \rangle of the diagonal is exactly zero. A is singular and the solution has not been computed.

7 Accuracy

The solutions of triangular systems of equations are usually computed to high accuracy. See Higham (1989).

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of equations $(A+E) x=b$, where

$$
|E| \leq c(n) \epsilon|A|
$$

$c(n)$ is a modest linear function of n, and ϵ is the machine precision.
If \hat{x} is the true solution, then the computed solution x satisfies a forward error bound of the form

$$
\frac{\|x-\hat{x}\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \operatorname{cond}(A, x) \epsilon, \quad \text { provided } \quad c(n) \operatorname{cond}(A, x) \epsilon<1
$$

where $\operatorname{cond}(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty}$.
Note that $\operatorname{cond}(A, x) \leq \operatorname{cond}(A)=\| \| A^{-1}\|A \mid\|_{\infty} \leq \kappa_{\infty}(A) ; \operatorname{cond}(A, x)$ can be much smaller than $\operatorname{cond}(A)$ and it is also possible for cond $\left(A^{\mathrm{T}}\right)$ to be much larger (or smaller) than $\operatorname{cond}(A)$.
Forward and backward error bounds can be computed by calling F07THF (DTRRFS), and an estimate for $\kappa_{\infty}(A)$ can be obtained by calling F07TGF (DTRCON) with NORM = 'I'.

8 Parallelism and Performance

F07TEF (DTRTRS) is not threaded by NAG in any implementation.
F07TEF (DTRTRS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately $n^{2} r$.
The complex analogue of this routine is F07TSF (ZTRTRS).

10 Example

This example solves the system of equations $A X=B$, where

$$
A=\left(\begin{array}{rrrr}
4.30 & 0.00 & 0.00 & 0.00 \\
-3.96 & -4.87 & 0.00 & 0.00 \\
0.40 & 0.31 & -8.02 & 0.00 \\
-0.27 & 0.07 & -5.95 & 0.12
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rr}
-12.90 & -21.50 \\
16.75 & 14.93 \\
-17.55 & 6.33 \\
-11.04 & 8.09
\end{array}\right)
$$

10.1 Program Text

Program f07tefe

```
F07TEF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Use Statements ..
    Use nag_library, Only: dtrtrs, nag_wp, x04caf
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
    Character (1), Parameter :: diag = 'N', trans = 'N'
    .. Local Scalars ..
    Integer :: i, ifail, info, lda, ldb, n, nrhs
    Character (1) :: uplo
    .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:)
    .. Executable Statements ..
    Write (nout,*) 'FO7TEF Example Program Results'
    Skip heading in data file
    Read (nin,*)
    Read (nin,*) n, nrhs
    lda = n
    ldb = n
    Allocate (a(lda,n),b(ldb,nrhs))
    Read A and B from data file
    Read (nin,*) uplo
    If (uplo=='U') Then
        Read (nin,*)(a(i,i:n),i=1,n)
    Else If (uplo=='L') Then
        Read (nin,*)(a(i,1:i),i=1,n)
    End If
    Read (nin,*)(b(i,1:nrhs),i=1,n)
    Compute solution
    The NAG name equivalent of dtrtrs is f07tef
    call dtrtrs(uplo,trans,diag,n,nrhs,a,lda,b,ldb,info)
    Print solution
    Write (nout,*)
    Flush (nout)
    If (info==0) Then
        ifail: behaviour on error exit
            =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
        ifail = 0
        Call x04caf('General',' ',n,nrhs,b,ldb,'Solution(s)',ifail)
    Else
        Write (nout,*) 'A is singular'
    End If
```

End Program f07tefe

10.2 Program Data

```
F07TEF Example Program Data
    42
    'L'
        N and NRHS
        :Value of UPLO
    4.30
    \(-3.96 \quad-4.87\)
    \(0.40 \quad 0.31 \quad-8.02\)
```

-0.27	0.07	-5.95	0.12
-12.90	-21.50		: End of matrix A
16.75	14.93		
-17.55	6.33		
-11.04	8.09		:End of matrix B

10.3 Program Results

F07TEF Example Program Results
Solution(s)

	1	2
1	-3.0000	-5.0000
2	-1.0000	1.0000
3	2.0000	-1.0000
4	1.0000	6.0000

[^0]: Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

