NAG Library Routine Document
 F07NVF (ZSYRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07NVF (ZSYRFS) returns error bounds for the solution of a complex symmetric system of linear equations with multiple right-hand sides, $A X=B$. It improves the solution by iterative refinement, in order to reduce the backward error as much as possible.

2 Specification

```
SUBROUTINE FO7NVF (UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, &
    LDX, FERR, BERR, WORK, RWORK, INFO)
INTEGER N, NRHS, LDA, LDAF, IPIV(*), LDB, LDX, INFO
REAL (KIND=nag_wp) FERR(NRHS), BERR(NRHS), RWORK (N)
COMPLEX (KIND=nag_wp) A (LDA,*), AF (LDAF,*), B(LDB,*), X(LDX,*), &
CHARACTER(1) UPLO
```

The routine may be called by its LAPACK name zsyrfs.

3 Description

F07NVF (ZSYRFS) returns the backward errors and estimated bounds on the forward errors for the solution of a complex symmetric system of linear equations with multiple right-hand sides $A X=B$. The routine handles each right-hand side vector (stored as a column of the matrix B) independently, so we describe the function of F07NVF (ZSYRFS) in terms of a single right-hand side b and solution x.
Given a computed solution x, the routine computes the component-wise backward error β. This is the size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a perturbed system

$$
\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right| \quad \begin{gathered}
(A+\delta A) x=b+\delta b \\
\text { and } \quad\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right| .
\end{gathered}
$$

Then the routine estimates a bound for the component-wise forward error in the computed solution, defined by:

$$
\max _{i}\left|x_{i}-\hat{x}_{i}\right| / \max _{i}\left|x_{i}\right|
$$

where \hat{x} is the true solution.
For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

1: UPLO - CHARACTER(1)
Input
On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be factorized.
$\mathrm{UPLO}=$ ' U '
The upper triangular part of A is stored and A is factorized as $P U D U^{\mathrm{T}} P^{\mathrm{T}}$, where U is upper triangular.
$\mathrm{UPLO}=$ ' L '
The lower triangular part of A is stored and A is factorized as $P L D L^{\mathrm{T}} P^{\mathrm{T}}$, where L is lower triangular.
Constraint: UPLO = 'U' or 'L'.
2: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the order of the matrix A.
Constraint: $\mathrm{N} \geq 0$.

3: NRHS - INTEGER
Input
On entry: r, the number of right-hand sides.
Constraint: NRHS ≥ 0.
4: $\mathrm{A}(\mathrm{LDA}, *)$ - COMPLEX (KIND=nag_wp) array
Input
Note: the second dimension of the array A must be at least $\max (1, \mathrm{~N})$.
On entry: the n by n original symmetric matrix A as supplied to F07NRF (ZSYTRF).
5: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F07NVF (ZSYRFS) is called.
Constraint: $\mathrm{LDA} \geq \max (1, \mathrm{~N})$.
6: $\mathrm{AF}(\mathrm{LDAF}, *)-\mathrm{COMPLEX}(\mathrm{KIND}=$ nag_wp) array
Input
Note: the second dimension of the array AF must be at least $\max (1, \mathrm{~N})$.
On entry: details of the factorization of A, as returned by F07NRF (ZSYTRF).
7: LDAF - INTEGER
Input
On entry: the first dimension of the array AF as declared in the (sub)program from which F07NVF (ZSYRFS) is called.
Constraint: $\operatorname{LDAF} \geq \max (1, \mathrm{~N})$.
8: $\quad \operatorname{IPIV}(*)$ - INTEGER array
Input
Note: the dimension of the array IPIV must be at least $\max (1, \mathrm{~N})$.
On entry: details of the interchanges and the block structure of D, as returned by F07NRF (ZSYTRF).

9: $\quad \mathrm{B}(\mathrm{LDB}, *)-\mathrm{COMPLEX}(\mathrm{KIND}=$ nag_wp) array
Input
Note: the second dimension of the array B must be at least max (1, NRHS).
On entry: the n by r right-hand side matrix B.

10: LDB - INTEGER
Input
On entry: the first dimension of the array B as declared in the (sub)program from which F07NVF (ZSYRFS) is called.
Constraint: $\operatorname{LDB} \geq \max (1, \mathrm{~N})$.
11: $\mathrm{X}(\mathrm{LDX}, *)-\mathrm{COMPLEX}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
Note: the second dimension of the array X must be at least $\max (1$, NRHS $)$.
On entry: the n by r solution matrix X, as returned by F07NSF (ZSYTRS).
On exit: the improved solution matrix X.
12: LDX - INTEGER
Input
On entry: the first dimension of the array X as declared in the (sub)program from which F07NVF (ZSYRFS) is called.
Constraint: $\operatorname{LDX} \geq \max (1, \mathrm{~N})$.

Output
On exit: $\operatorname{FERR}(j)$ contains an estimated error bound for the j th solution vector, that is, the j th column of X, for $j=1,2, \ldots, r$.

14: \quad BERR(NRHS) - REAL (KIND $=$ nag_wp) array
Output
On exit: $\operatorname{BERR}(j)$ contains the component-wise backward error bound β for the j th solution vector, that is, the j th column of X, for $j=1,2, \ldots, r$.

15: $\operatorname{WORK}(2 \times \mathrm{N})-$ COMPLEX $(\mathrm{KIND}=$ nag_wp $)$ array Workspace
16: \quad RWORK (N) - REAL (KIND=nag_wp) array Workspace
17: INFO - INTEGER
Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO <0
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

$7 \quad$ Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F07NVF (ZSYRFS) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
F07NVF (ZSYRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

For each right-hand side, computation of the backward error involves a minimum of $16 n^{2}$ real floatingpoint operations. Each step of iterative refinement involves an additional $24 n^{2}$ real operations. At most five steps of iterative refinement are performed, but usually only one or two steps are required.
Estimating the forward error involves solving a number of systems of linear equations of the form $A x=b$; the number is usually 5 and never more than 11 . Each solution involves approximately $8 n^{2}$ real operations.
The real analogue of this routine is F07MHF (DSYRFS).

10 Example

This example solves the system of equations $A X=B$ using iterative refinement and to compute the forward and backward error bounds, where

$$
A=\left(\begin{array}{rrrr}
-0.39-0.71 i & 5.14-0.64 i & -7.86-2.96 i & 3.80+0.92 i \\
5.14-0.64 i & 8.86+1.81 i & -3.52+0.58 i & 5.32-1.59 i \\
-7.86-2.96 i & -3.52+0.58 i & -2.83-0.03 i & -1.54-2.86 i \\
3.80+0.92 i & 5.32-1.59 i & -1.54-2.86 i & -0.56+0.12 i
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{rr}
-55.64+41.22 i & -19.09-35.97 i \\
-48.18+66.00 i & -12.08-27.02 i \\
-0.49-1.47 i & 6.95+20.49 i \\
-6.43+19.24 i & -4.59-35.53 i
\end{array}\right)
$$

Here A is symmetric and must first be factorized by F07NRF (ZSYTRF).

10.1 Program Text

```
    Program f07nvfe
    F07NVF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Use Statements ..
    Use nag_library, Only: f06tff, nag_wp, x04dbf, zsyrfs, zsytrf, zsytrs
    .. Implicit None Statement ..
    Implicit None
! .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
    Integer :: i, ifail, info, lda, ldaf, ldb, ldx, &
    Character (1) :: uplo
    .. Local Arrays ..
    Complex (Kind=nag_wp), Allocatable :: a(:,:), af(:,:), b(:,:), work(:), &
                                    x(:,:)
    Real (Kind=nag_wp), Allocatable :: berr(:), ferr(:), rwork(:)
    Integer, Allocatable :: ipiv(:)
    Character (1) :: clabs(1), rlabs(1)
    .. Executable Statements ..
    Write (nout,*) 'FO7NVF Example Program Results'
    Skip heading in data file
        Read (nin,*)
        Read (nin,*) n, nrhs
        lda = n
        ldaf = n
```

```
ldb = n
ldx = n
lwork = 64*n
Allocate (a(lda,n),af(ldaf,n),b(ldb,nrhs),work(lwork),x(ldx,n), &
    berr(nrhs),ferr(nrhs),rwork(n),ipiv(n))
Read A and B from data file, and copy A to AF and B to X
Read (nin,*) uplo
If (uplo=='U') Then
    Read (nin,*)(a(i,i:n),i=1,n)
Else If (uplo=='L') Then
    Read (nin,*)(a(i,1:i),i=1,n)
End If
Read (nin,*)(b(i,1:nrhs),i=1,n)
Call f06tff(uplo,n,n,a,lda,af,ldaf)
x(1:n,1:nrhs) = b(1:n,1:nrhs)
Factorize A in the array AF
The NAG name equivalent of zsytrf is fO7nrf
Call zsytrf(uplo,n,af,ldaf,ipiv,work,lwork,info)
Write (nout,*)
Flush (nout)
If (info==0) Then
    Compute solution in the array X
    The NAG name equivalent of zsytrs is fO7nsf
    Call zsytrs(uplo,n,nrhs,af,ldaf,ipiv,x,ldx,info)
    Improve solution, and compute backward errors and
    estimated bounds on the forward errors
    The NAG name equivalent of zsyrfs is fO7nvf
    Call zsyrfs(uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,x,ldx,ferr,berr,work, &
        rwork,info)
    Print solution
    ifail: behaviour on error exit
            =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
    ifail = 0
    Call x04dbf('General',' ',n,nrhs,x,ldx,'Bracketed','F7.4', &
        'Solution(s)','Integer',rlabs,'Integer',clabs,80,0,ifail)
    Write (nout,*)
    Write (nout,*) 'Backward errors (machine-dependent)'
    Write (nout,99999) berr(1:nrhs)
    Write (nout,*) 'Estimated forward error bounds (machine-dependent)'
    Write (nout,99999) ferr(1:nrhs)
Else
    Write (nout,*) 'The factor D is singular'
End If
99999 Format ((5X,1P,4(E11.1,7X)))
    End Program f07nvfe
```


10.2 Program Data

```
FO7NVF Example Program Data
    4 2 , : V a l u e s ~ o f ~ N ~ a n d ~ N R H S
    'L'':Value of UPLO
(-0.39,-0.71)
( 5.14,-0.64) ( 8.86, 1.81)
(-7.86,-2.96) (-3.52, 0.58) (-2.83,-0.03)
( 3.80, 0.92) ( 5.32,-1.59) (-1.54,-2.86) (-0.56, 0.12) :End of matrix A
(-55.64, 41.22) (-19.09,-35.97)
(-48.18, 66.00) (-12.08,-27.02)
( -0.49, -1.47) ( 6.95, 20.49)
( -6.43, 19.24) ( -4.59,-35.53) :End of matrix B
```


10.3 Program Results

```
F07NVF Example Program Results
Solution(s)
1 (1.0000,-1.0000) ( (-2.0000,-1.0000)
2 (-2.0000, 5.0000) ( 1.0000,-3.0000)
3 ( 3.0000,-2.0000) ( 3.0000, 2.0000)
4(-4.0000, 3.0000) (-1.0000, 1.0000)
Backward errors (machine-dependent)
    8.9E-17 7.3E-17
Estimated forward error bounds (machine-dependent)
    1.2E-14 1.2E-14
```

