NAG Library Routine Document
 F07MAF (DSYSV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F07MAF (DSYSV) computes the solution to a real system of linear equations

$$
A X=B,
$$

where A is an n by n symmetric matrix and X and B are n by r matrices.

2 Specification

```
SUBROUTINE FO7MAF (UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK,
    INFO)
INTEGER N, NRHS, LDA, IPIV(*), LDB, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), B (LDB,*), WORK(max (1,LWORK))
CHARACTER(1) UPLO
```

The routine may be called by its LAPACK name dsysv.

3 Description

F07MAF (DSYSV) uses the diagonal pivoting method to factor A as $A=U D U^{\mathrm{T}}$ if UPLO $=$ ' U ' or $A=L D L^{\mathrm{T}}$ if UPLO $=$ ' L ', where $U($ or $L)$ is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1 by 1 and 2 by 2 diagonal blocks. The factored form of A is then used to solve the system of equations $A X=B$.

Note that, in general, different permutations (pivot sequences) and diagonal block structures are obtained for $\mathrm{UPLO}=$ ' U ' or ' L '

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

[^0]3: NRHS - INTEGER
Input
On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.
Constraint: NRHS ≥ 0.
4: $\quad \mathrm{A}(\mathrm{LDA}, *)-$ REAL (KIND=$=$ nag_wp) array
Input/Output
Note: the second dimension of the array A must be at least $\max (1, N)$.
On entry: the n by n symmetric matrix A.
If UPLO $=$ ' U ', the upper triangular part of A must be stored and the elements of the array below the diagonal are not referenced.

If UPLO $=$ 'L', the lower triangular part of A must be stored and the elements of the array above the diagonal are not referenced.

On exit: if INFO $=0$, the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization $A=U D U^{\mathrm{T}}$ or $A=L D L^{\mathrm{T}}$ as computed by F07MDF (DSYTRF).

5: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F07MAF (DSYSV) is called.
Constraint: $\mathrm{LDA} \geq \max (1, \mathrm{~N})$.
6: $\quad \operatorname{IPIV}(*)-\operatorname{INTEGER}$ array
Output
Note: the dimension of the array IPIV must be at least $\max (1, \mathrm{~N})$.
On exit: details of the interchanges and the block structure of D. More precisely,
if $\operatorname{IPIV}(i)=k>0, d_{i i}$ is a 1 by 1 pivot block and the i th row and column of A were interchanged with the k th row and column;
if UPLO $=$ ' U ' and $\operatorname{IPIV}(i-1)=\operatorname{IPIV}(i)=-l<0,\left(\begin{array}{cc}d_{i-1, i-1} & \bar{d}_{i, i-1} \\ \bar{d}_{i, i-1} & d_{i i}\end{array}\right)$ is a 2 by 2 pivot block and the $(i-1)$ th row and column of A were interchanged with the l th row and column;
if UPLO $=$ 'L' and $\operatorname{IPIV}(i)=\operatorname{IPIV}(i+1)=-m<0,\left(\begin{array}{cc}d_{i i} & d_{i+1, i} \\ d_{i+1, i} & d_{i+1, i+1}\end{array}\right)$ is a 2 by 2 pivot block and the $(i+1)$ th row and column of A were interchanged with the m th row and column.

7: $\quad \mathrm{B}(\mathrm{LDB}, *)-$ REAL (KIND=$=$ nag_wp) array
Input/Output
Note: the second dimension of the array B must be at least max (1, NRHS).
On entry: the n by r right-hand side matrix B.
On exit: if INFO $=0$, the n by r solution matrix X.
LDB - INTEGER
Input
On entry: the first dimension of the array B as declared in the (sub)program from which F07MAF (DSYSV) is called.
Constraint: $\mathrm{LDB} \geq \max (1, \mathrm{~N})$.
9: $\quad \operatorname{WORK}(\max (1$, LWORK $))-$ REAL (KIND=$=$ nag_wp $)$ array
Workspace
On exit: if $\operatorname{INFO}=0, \operatorname{WORK}(1)$ returns the optimal LWORK.

On entry: the dimension of the array WORK as declared in the (sub)program from which F07MAF (DSYSV) is called.
LWORK ≥ 1, and for best performance $\operatorname{LWORK} \geq \max (1, \mathrm{~N} \times n b)$, where $n b$ is the optimal block size for F07MDF (DSYTRF).

If LWORK $=-1$, a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued.

11: INFO - INTEGER
Output
On exit: $\mathrm{INFO}=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO <0
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

INFO >0

Element $\langle v a l u e\rangle$ of the diagonal is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, so the solution could not be computed.

$7 \quad$ Accuracy

The computed solution for a single right-hand side, \hat{x}, satisfies an equation of the form

$$
(A+E) \hat{x}=b,
$$

where

$$
\|E\|_{1}=O(\epsilon)\|A\|_{1}
$$

and ϵ is the machine precision. An approximate error bound for the computed solution is given by

$$
\frac{\|\hat{x}-x\|_{1}}{\|x\|_{1}} \leq \kappa(A) \frac{\|E\|_{1}}{\|A\|_{1}}
$$

where $\kappa(A)=\left\|A^{-1}\right\|_{1}\|A\|_{1}$, the condition number of A with respect to the solution of the linear equations. See Section 4.4 of Anderson et al. (1999) for further details.

F07MBF (DSYSVX) is a comprehensive LAPACK driver that returns forward and backward error bounds and an estimate of the condition number. Alternatively, F04BHF solves $A x=b$ and returns a forward error bound and condition estimate. F04BHF calls F07MAF (DSYSV) to solve the equations.

8 Parallelism and Performance

F07MAF (DSYSV) is not threaded by NAG in any implementation.
F07MAF (DSYSV) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately $\frac{1}{3} n^{3}+2 n^{2} r$, where r is the number of right-hand sides.
The complex analogues of F07MAF (DSYSV) are F07MNF (ZHESV) for Hermitian matrices, and F07NNF (ZSYSV) for symmetric matrices.

10 Example

This example solves the equations

$$
A x=b
$$

where A is the symmetric matrix

$$
A=\left(\begin{array}{rrrr}
-1.81 & 2.06 & 0.63 & -1.15 \\
2.06 & 1.15 & 1.87 & 4.20 \\
0.63 & 1.87 & -0.21 & 3.87 \\
-1.15 & 4.20 & 3.87 & 2.07
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{c}
0.96 \\
6.07 \\
8.38 \\
9.50
\end{array}\right)
$$

Details of the factorization of A are also output.

10.1 Program Text

```
    Program f07mafe
    F07MAF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Use Statements ..
    Use nag_library, Only: dsysv, nag_wp, x04caf
! .. Implicit None Statement ..
    Implicit None
! .. Parameters ..
    Integer, Parameter : : nb = 64, nin = 5, nout = 6
! .. Local Scalars ..
    Integer :: i, ifail, info, lda, lwork, n
! .. Local Arrays .
    Real (Kind=nag_wp), Allocatable :: a(:,:), b(:), work(:)
    Integer, Allocatable :: ipiv(:)
    .. Executable Statements ..
    Write (nout,*) 'FO7MAF Example Program Results'
    Write (nout,*)
    Skip heading in data file
    Read (nin,*)
    Read (nin,*) n
    lda = n
    lwork = nb*n
    Allocate (a(lda,n),b(n),work(lwork),ipiv(n))
! Read the upper triangular part of the matrix A from data file
    Read (nin,*)(a(i,i:n),i=1,n)
! Read b from data file
    Read (nin,*) b(1:n)
    Solve the equations Ax = b for x
    The NAG name equivalent of dsysv is f07maf
        Call dsysv('Upper',n,1,a,lda,ipiv,b,n,work,lwork,info)
        If (info==0) Then
        Print solution
```

```
            Write (nout,*) 'Solution'
            Write (nout,99999) b(1:n)
            Print details of factorization
            Write (nout,*)
            Flush (nout)
            ifail: behaviour on error exit
            =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
            ifail = 0
            Call x04caf('Upper','Non-unit diagonal',n,n,a,lda, &
        'Details of the factorization',ifail)
            Print pivot indices
            Write (nout,*)
            Write (nout,*) 'Pivot indices'
            Write (nout,99998) ipiv(1:n)
                            Else
            Write (nout,99997) 'The diagonal block ', info, ' of D is zero'
End If
99999 Format ((3X,7F11.4))
99998 Format (1X,7I11)
99997 Format (1X,A,I3,A)
    End Program f07mafe
```


10.2 Program Data

10.3 Program Results

F07MAF Example Program Results			
Solution			
-5.0000	-2.0000	1.0000	4.0000
Details of the factorization			
1	2	3	4
10.4074	0.3031	-0.5960	0.6537
2	-2.5907	0.8115	0.2230
3		1.1500	4.2000
4			2.0700
Pivot indices			
1	2	-2	-2

[^0]: 1: UPLO - CHARACTER(1)
 Input
 On entry: if UPLO $=$ ' U ', the upper triangle of A is stored.
 If UPLO $=$ 'L', the lower triangle of A is stored.
 Constraint: UPLO = 'U' or 'L'.
 2: N - INTEGER
 Input
 On entry: n, the number of linear equations, i.e., the order of the matrix A.
 Constraint: $\mathrm{N} \geq 0$.

