NAG Library Routine Document
 F07KDF (DPSTRF)

Abstract

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F07KDF (DPSTRF) computes the Cholesky factorization with complete pivoting of a real symmetric positive semidefinite matrix.

2 Specification

```
SUBROUTINE FO7KDF (UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO)
INTEGER N, LDA, PIV(N), RANK, INFO
REAL (KIND=nag_wp) A(LDA,*), TOL, WORK(2*N)
CHARACTER(1) UPLO
```

The routine may be called by its LAPACK name dpstrf.

3 Description

F07KDF (DPSTRF) forms the Cholesky factorization of a real symmetric positive semidefinite matrix A either as $P^{\mathrm{T}} A P=U^{\mathrm{T}} U$ if UPLO $={ }^{\prime} \mathrm{U}^{\prime}$ or $P^{\mathrm{T}} A P=L L^{\mathrm{T}}$ if UPLO $=$ ' L ', where P is a permutation matrix, U is an upper triangular matrix and L is lower triangular.
This algorithm does not attempt to check that A is positive semidefinite.

4 References

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia Lucas C (2004) LAPACK-style codes for Level 2 and 3 pivoted Cholesky factorizations LAPACK Working Note No. 161. Technical Report CS-04-522 Department of Computer Science, University of Tennessee, 107 Ayres Hall, Knoxville, TN 37996-1301, USA http://www.netlib.org/lapack/lawnspdf/ lawn161.pdf

5 Parameters

1: UPLO - CHARACTER(1)
Input
On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be factorized.
$\mathrm{UPLO}=$ ' U '
The upper triangular part of A is stored and A is factorized as $U^{\mathrm{T}} U$, where U is upper triangular.
$\mathrm{UPLO}=$ 'L'
The lower triangular part of A is stored and A is factorized as $L L^{\mathrm{T}}$, where L is lower triangular.
Constraint: UPLO = 'U' or 'L'.
2: N - INTEGER
Input
On entry: n, the order of the matrix A.
Constraint: $\mathrm{N} \geq 0$.

3: $\quad \mathrm{A}(\mathrm{LDA}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
Note: the second dimension of the array A must be at least $\max (1, N)$.
On entry: the n by n symmetric positive semidefinite matrix A.
If UPLO $=$ ' U ', the upper triangular part of A must be stored and the elements of the array below the diagonal are not referenced.

If UPLO $=$ 'L', the lower triangular part of A must be stored and the elements of the array above the diagonal are not referenced.
On exit: if UPLO $=$ ' U ', the first RANK rows of the upper triangle of A are overwritten with the nonzero elements of the Cholesky factor U, and the remaining rows of the triangle are destroyed.

If UPLO $=$ 'L', the first RANK columns of the lower triangle of A are overwritten with the nonzero elements of the Cholesky factor L, and the remaining columns of the triangle are destroyed.

4: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F07KDF (DPSTRF) is called.
Constraint: $\mathrm{LDA} \geq \max (1, \mathrm{~N})$.
5: $\quad \operatorname{PIV}(\mathrm{N})-\operatorname{INTEGER}$ array
Output
On exit: PIV is such that the nonzero entries of P are $P(\operatorname{PIV}(k), k)=1$, for $k=1,2, \ldots, n$.
6: RANK - INTEGER
Output
On exit: the computed rank of A given by the number of steps the algorithm completed.
7: \quad TOL - REAL (KIND=$=$ nag_wp) Input
On entry: user defined tolerance. If $\mathrm{TOL}<0$, then $n \times \max _{k=1, n}\left|A_{k k}\right| \times$ machine precision will be used. The algorithm terminates at the r th step if the $(r+1)$ th step pivot $<$ TOL.

8: $\operatorname{WORK}(2 * \mathrm{~N})$ - REAL (KIND=nag_wp) array Workspace
9: INFO - INTEGER
Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO <0
If $\operatorname{INFO}=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

$\mathrm{INFO}=1$

The matrix A is not positive definite. It is either positive semidefinite with computed rank as returned in RANK and less than n, or it may be indefinite, see Section 9.

7 Accuracy

If UPLO $=$ 'L' and RANK $=r$, the computed Cholesky factor L and permutation matrix P satisfy the following upper bound

$$
\frac{\left\|A-P L L^{\mathrm{T}} P^{\mathrm{T}}\right\|_{2}}{\|A\|_{2}} \leq 2 r c(r) \epsilon\left(\|W\|_{2}+1\right)^{2}+O\left(\epsilon^{2}\right)
$$

where

$$
W=L_{11}^{-1} L_{12}, \quad L=\left(\begin{array}{ll}
L_{11} & 0 \\
L_{12} & 0
\end{array}\right), \quad L_{11} \in \mathbb{R}^{r \times r}
$$

$c(r)$ is a modest linear function of r, ϵ is machine precision, and

$$
\|W\|_{2} \leq \sqrt{\frac{1}{3}(n-r)\left(4^{r}-1\right)}
$$

So there is no guarantee of stability of the algorithm for large n and r, although $\|W\|_{2}$ is generally small in practice.

8 Parallelism and Performance

F07KDF (DPSTRF) is not threaded by NAG in any implementation.
F07KDF (DPSTRF) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately $n r^{2}-2 / 3 r^{3}$, where r is the computed rank of A.

This algorithm does not attempt to check that A is positive semidefinite, and in particular the rank detection criterion in the algorithm is based on A being positive semidefinite. If there is doubt over semidefiniteness then you should use the indefinite factorization F07MDF (DSYTRF). See Lucas (2004) for further information.

The complex analogue of this routine is F07KRF (ZPSTRF).

10 Example

This example computes the Cholesky factorization of the matrix A, where

$$
A=\left(\begin{array}{lllll}
2.51 & 4.04 & 3.34 & 1.34 & 1.29 \\
4.04 & 8.22 & 7.38 & 2.68 & 2.44 \\
3.34 & 7.38 & 7.06 & 2.24 & 2.14 \\
1.34 & 2.68 & 2.24 & 0.96 & 0.80 \\
1.29 & 2.44 & 2.14 & 0.80 & 0.74
\end{array}\right)
$$

10.1 Program Text

```
Program f07kdfe
    FO7KDF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Use Statements ..
```

 Call dpstrf(uplo,n,a,lda,piv,rank,tol,work,info)
 Zero out columns rank+1 to \(n\)
 If (uplo=='U') Then
 Do \(j=r a n k+1, n\)
 a(rank+1:j,j) = zero
 End Do
 Else If (uplo=='L') Then
 Do \(j=r a n k+1, n\)
 \(a(j: n, j)=z e r o\)
 End Do
 End If
 Print rank
 Write (nout,*)
 Write (nout,'(1X,A15,I3)') 'Computed rank: ', rank
 Print factor
 Write (nout,*)
 Flush (nout)
 ifail \(=0\)
 Call x04caf(uplo,'Nonunit',n,n,a,lda,'Factor',ifail)
 Print pivot indices
 Write (nout,*)
 Write (nout,*) 'PIV'
 Flush (nout)
 ifail \(=0\)
 Call x04ebf('General','Non-unit', 1,n,piv,1,'I11',' ', 'No',rlabs,'No', \&
 clabs, 80,1, ifail)
 End Program f07kdfe

10.2 Program Data

```
FO7KDF Example Program Data
    5 'L' : n, uplo
    2.51
    4.04 8.22
    3.34 7.38 7.06
    1.34 2.68 2.24 0.96
    1.29 2.44 2.14 0.80 0.74 : End of matrix A
```


10.3 Program Results

F07KDF Example Program Results				
Computed rank:	3			
Factor				
1	2	3	4	5
12.8671				
21.4091	0.7242			
$3 \quad 2.5741$	-0.3965	0.5262		
40.9348	0.0315	-0.2920	0.0000	
50.8510	0.1254	-0.0018	0.0000	0.0000
PIV				
2	1	3	4	5

