NAG Library Routine Document
 F07GGF (DPPCON)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F07GGF (DPPCON) estimates the condition number of a real symmetric positive definite matrix A, where A has been factorized by F07GDF (DPPTRF), using packed storage.

2 Specification

```
SUBROUTINE FO7GGF (UPLO, N, AP, ANORM, RCOND, WORK, IWORK, INFO)
INTEGER N, IWORK(N), INFO
REAL (KIND=nag_wp) AP(*), ANORM, RCOND, WORK(3*N)
CHARACTER(1) UPLO
```

The routine may be called by its LAPACK name dppcon.

3 Description

F07GGF (DPPCON) estimates the condition number (in the 1-norm) of a real symmetric positive definite matrix A :

$$
\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1} .
$$

Since A is symmetric, $\kappa_{1}(A)=\kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}$.
Because $\kappa_{1}(A)$ is infinite if A is singular, the routine actually returns an estimate of the reciprocal of $\kappa_{1}(A)$.

The routine should be preceded by a call to F06RDF to compute $\|A\|_{1}$ and a call to F07GDF (DPPTRF) to compute the Cholesky factorization of A. The routine then uses Higham's implementation of Hager's method (see Higham (1988)) to estimate $\left\|A^{-1}\right\|_{1}$.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation ACM Trans. Math. Software 14 381-396

5 Parameters

1: UPLO - CHARACTER(1) Input
On entry: specifies how A has been factorized.
$\mathrm{UPLO}=$ ' U '
$A=U^{\mathrm{T}} U$, where U is upper triangular.
$\mathrm{UPLO}=$ 'L'
$A=L L^{\mathrm{T}}$, where L is lower triangular.
Constraint: UPLO $=$ ' U ' or 'L'.
2: N - INTEGER
Input
On entry: n, the order of the matrix A.
Constraint: $\mathrm{N} \geq 0$.

3: $\quad \operatorname{AP}(*)-$ REAL (KIND=nag_wp) array
Input
Note: the dimension of the array AP must be at least $\max (1, \mathrm{~N} \times(\mathrm{N}+1) / 2)$.
On entry: the Cholesky factor of A stored in packed form, as returned by F07GDF (DPPTRF).
4: ANORM - REAL (KIND=nag_wp) Input
On entry: the 1-norm of the original matrix A, which may be computed by calling F06RDF with its parameter NORM = ' 1 '. ANORM must be computed either before calling F07GDF (DPPTRF) or else from a copy of the original matrix A.
Constraint: ANORM ≥ 0.0.
5: \quad RCOND - REAL (KIND=nag_wp)
Output
On exit: an estimate of the reciprocal of the condition number of A. RCOND is set to zero if exact singularity is detected or the estimate underflows. If RCOND is less than machine precision, A is singular to working precision.

6: $\operatorname{WORK}(3 \times \mathrm{N})-$ REAL $(\mathrm{KIND}=$ nag_wp $)$ array Workspace
7: $\quad \operatorname{IWORK}(\mathrm{N})-$ INTEGER array
Workspace

8: INFO - INTEGER
Output
On exit: $\mathrm{INFO}=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO <0
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

$7 \quad$ Accuracy

The computed estimate RCOND is never less than the true value ρ, and in practice is nearly always less than 10ρ, although examples can be constructed where RCOND is much larger.

8 Parallelism and Performance

F07GGF (DPPCON) is not threaded by NAG in any implementation.
F07GGF (DPPCON) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

A call to F07GGF (DPPCON) involves solving a number of systems of linear equations of the form $A x=b$; the number is usually 4 or 5 and never more than 11 . Each solution involves approximately $2 n^{2}$ floating-point operations but takes considerably longer than a call to F07GEF (DPPTRS) with one righthand side, because extra care is taken to avoid overflow when A is approximately singular.

The complex analogue of this routine is F07GUF (ZPPCON).

10 Example

This example estimates the condition number in the 1 -norm (or ∞-norm) of the matrix A, where

$$
A=\left(\begin{array}{rrrr}
4.16 & -3.12 & 0.56 & -0.10 \\
-3.12 & 5.03 & -0.83 & 1.18 \\
0.56 & -0.83 & 0.76 & 0.34 \\
-0.10 & 1.18 & 0.34 & 1.18
\end{array}\right)
$$

Here A is symmetric positive definite, stored in packed form, and must first be factorized by F07GDF (DPPTRF). The true condition number in the 1 -norm is 97.32 .

10.1 Program Text

```
Program f07ggfe
    F07GGF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Use Statements ..
    Use nag_library, Only: dlansp => f06rdf, dppcon, dpptrf, nag_wp, x02ajf
    .. Implicit None Statement ..
    Implicit None
! .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
    Real (Kind=nag_wp) :: anorm, rcond
    Integer :: i, info, j, n
    Character (1) :: uplo
    .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: ap(:), work(:)
    Integer, Allocatable :: iwork(:)
    .. Executable Statements ..
    Write (nout,*) 'FO7GGF Example Program Results'
    Skip heading in data file
    Read (nin,*)
    Read (nin,*) n
    Allocate (ap(n*(n+1)/2),work(3*n),iwork(n))
! Read A from data file
    Read (nin,*) uplo
    If (uplo=='U') Then
        Read (nin,*)((ap (i+j*(j-1)/2),j=i,n),i=1,n)
        Else If (uplo=='L') Then
            Read (nin,*)((ap (i+(2*n-j)* (j-1)/2),j=1,i),i=1,n)
        End If
    Compute norm of A
    f06rdf is the NAG name equivalent of the LAPACK auxiliary dlansp
    anorm = dlansp('1-norm',uplo,n,ap,work)
    Factorize A
    The NAG name equivalent of dppcon is f07gdf
    Call dpptrf(uplo,n,ap,info)
    Write (nout,*)
    If (info==0) Then
    Estimate condition number
    The NAG name equivalent of dppcon is f07ggf
    Call dppcon(uplo,n,ap,anorm,rcond,work,iwork,info)
    If (rcond>=x02ajf()) Then
        Write (nout,99999) 'Estimate of condition number =', &
            1.0_nag_wp/rcond
```

```
            Else
            Write (nout,*) 'A is singular to working precision'
            End If
    Else
    Write (nout,*) 'A is not positive definite'
    End If
99999 Format (1X,A,1P,E10.2)
    End Program f07ggfe
```


10.2 Program Data

10.3 Program Results

```
F07GGF Example Program Results
Estimate of condition number = 9.73E+01
```

