NAG Library Routine Document
 F07CHF (DGTRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F07CHF (DGTRFS) computes error bounds and refines the solution to a real system of linear equations $A X=B$ or $A^{\mathrm{T}} X=B$, where A is an n by n tridiagonal matrix and X and B are n by r matrices, using the $L U$ factorization returned by F07CDF (DGTTRF) and an initial solution returned by F07CEF (DGTTRS). Iterative refinement is used to reduce the backward error as much as possible.

2 Specification

```
SUBROUTINE FO7CHF (TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV,
    B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)
INTEGER N, NRHS, IPIV(*), LDB, LDX, IWORK(N), INFO
REAL (KIND=nag_wp) DL(*), D(*), DU(*), DLF(*), DF(*), DUF(*), DU2(*), % & %
    B(LDB,*), X(LDX *), FERR(NRHS), BERR(NRHS ),
    WORK(3*N)
CHARACTER(1) TRANS
```

The routine may be called by its LAPACK name dgtrfs.

3 Description

F07CHF (DGTRFS) should normally be preceded by calls to F07CDF (DGTTRF) and F07CEF (DGTTRS). F07CDF (DGTTRF) uses Gaussian elimination with partial pivoting and row interchanges to factorize the matrix A as

$$
A=P L U
$$

where P is a permutation matrix, L is unit lower triangular with at most one nonzero subdiagonal element in each column, and U is an upper triangular band matrix, with two superdiagonals. F07CEF (DGTTRS) then utilizes the factorization to compute a solution, \hat{X}, to the required equations. Letting \hat{x} denote a column of \hat{X}, F07CHF (DGTRFS) computes a component-wise backward error, β, the smallest relative perturbation in each element of A and b such that \hat{x} is the exact solution of a perturbed system

$$
(A+E) \hat{x}=b+f, \quad \text { with } \quad\left|e_{i j}\right| \leq \beta\left|a_{i j}\right|, \quad \text { and } \quad\left|f_{j}\right| \leq \beta\left|b_{j}\right|
$$

The routine also estimates a bound for the component-wise forward error in the computed solution defined by max $\left|x_{i}-\hat{x_{i}}\right| / \max \left|\hat{x}_{i}\right|$, where x is the corresponding column of the exact solution, X.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug

5 Parameters

1: TRANS - CHARACTER(1)
Input
On entry: specifies the equations to be solved as follows:

$$
\begin{aligned}
& \text { TRANS }=\text { ' } \mathrm{N}^{\prime} \\
& \text { Solve } A X=B \text { for } X
\end{aligned}
$$

TRANS $=$ 'T' or 'C'
Solve $A^{\mathrm{T}} X=B$ for X.
Constraint: TRANS $=$ ' N ', ' T ' or ' C '.
2: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the order of the matrix A.
Constraint: $\mathrm{N} \geq 0$.
3: NRHS - INTEGER
Input
On entry: r, the number of right-hand sides, i.e., the number of columns of the matrix B.
Constraint: NRHS ≥ 0.
4: $\quad \mathrm{DL}(*)$ - REAL (KIND=nag_wp) array
Input
Note: the dimension of the array DL must be at least $\max (1, \mathrm{~N}-1)$.
On entry: must contain the $(n-1)$ subdiagonal elements of the matrix A.
5: $\mathrm{D}(*)-$ REAL (KIND $=$ nag_wp) array
Input
Note: the dimension of the array D must be at least $\max (1, \mathrm{~N})$.
On entry: must contain the n diagonal elements of the matrix A.
6: $\quad \mathrm{DU}(*)-$ REAL (KIND=nag_wp) array
Input
Note: the dimension of the array DU must be at least $\max (1, \mathrm{~N}-1)$.
On entry: must contain the $(n-1)$ superdiagonal elements of the matrix A.
7: $\quad \operatorname{DLF}(*)-$ REAL (KIND=nag_wp) array
Input
Note: the dimension of the array DLF must be at least $\max (1, \mathrm{~N}-1)$.
On entry: must contain the $(n-1)$ multipliers that define the matrix L of the $L U$ factorization of A.

8: $\quad \mathrm{DF}(*)$ - REAL (KIND=nag_wp) array
Input
Note: the dimension of the array DF must be at least $\max (1, \mathrm{~N})$.
On entry: must contain the n diagonal elements of the upper triangular matrix U from the $L U$ factorization of A.

9: $\quad \operatorname{DUF}(*)$ - REAL (KIND=nag_wp) array
Input
Note: the dimension of the array DUF must be at least $\max (1, \mathrm{~N}-1)$.
On entry: must contain the $(n-1)$ elements of the first superdiagonal of U.
10: $\operatorname{DU} 2(*)$ - REAL (KIND=nag_wp) array
Input
Note: the dimension of the array DU2 must be at least $\max (1, \mathrm{~N}-2)$.
On entry: must contain the $(n-2)$ elements of the second superdiagonal of U.
11: $\operatorname{IPIV}(*)$ - INTEGER array
Input
Note: the dimension of the array IPIV must be at least $\max (1, \mathrm{~N})$.
On entry: must contain the n pivot indices that define the permutation matrix P. At the i th step, row i of the matrix was interchanged with row $\operatorname{IPIV}(i)$, and $\operatorname{IPIV}(i)$ must always be either i or $(i+1), \operatorname{IPIV}(i)=i$ indicating that a row interchange was not performed.

12: $\mathrm{B}(\mathrm{LDB}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input
Note: the second dimension of the array B must be at least max(1,NRHS).
On entry: the n by r matrix of right-hand sides B.
13: LDB - INTEGER
Input
On entry: the first dimension of the array B as declared in the (sub)program from which F07CHF (DGTRFS) is called.
Constraint: $\operatorname{LDB} \geq \max (1, \mathrm{~N})$.
14: $\mathrm{X}(\mathrm{LDX}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Input/Output
Note: the second dimension of the array X must be at least $\max (1$, NRHS $)$.
On entry: the n by r initial solution matrix X.
On exit: the n by r refined solution matrix X.
15: LDX - INTEGER
Input
On entry: the first dimension of the array X as declared in the (sub)program from which F07CHF (DGTRFS) is called.
Constraint: $\mathrm{LDX} \geq \max (1, \mathrm{~N})$.
16: FERR(NRHS) - REAL (KIND=nag_wp) array
Output
On exit: estimate of the forward error bound for each computed solution vector, such that $\left\|\hat{x}_{j}-x_{j}\right\|_{\infty} /\left\|\hat{x}_{j}\right\|_{\infty} \leq \operatorname{FERR}(j)$, where \hat{x}_{j} is the j th column of the computed solution returned in the array X and x_{j} is the corresponding column of the exact solution X. The estimate is almost always a slight overestimate of the true error.

17: \quad BERR(NRHS) - REAL (KIND=nag_wp) array
Output
On exit: estimate of the component-wise relative backward error of each computed solution vector \hat{x}_{j} (i.e., the smallest relative change in any element of A or B that makes \hat{x}_{j} an exact solution).

18: $\quad \operatorname{WORK}(3 \times \mathrm{N})-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Workspace
19: $\operatorname{IWORK}(\mathrm{N})-$ INTEGER array
Workspace
20: INFO - INTEGER
Output
On exit: $\mathrm{INFO}=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO <0
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

$7 \quad$ Accuracy

The computed solution for a single right-hand side, \hat{x}, satisfies an equation of the form

$$
(A+E) \hat{x}=b
$$

where

$$
\|E\|_{\infty}=O(\epsilon)\|A\|_{\infty}
$$

and ϵ is the machine precision. An approximate error bound for the computed solution is given by

$$
\frac{\|\hat{x}-x\|_{\infty}}{\|x\|_{\infty}} \leq \kappa(A) \frac{\|E\|_{\infty}}{\|A\|_{\infty}}
$$

where $\kappa(A)=\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}$, the condition number of A with respect to the solution of the linear equations. See Section 4.4 of Anderson et al. (1999) for further details.

Routine F07CGF (DGTCON) can be used to estimate the condition number of A.

8 Parallelism and Performance

F07CHF (DGTRFS) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
F07CHF (DGTRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations required to solve the equations $A X=B$ or $A^{\mathrm{T}} X=B$ is proportional to $n r$. At most five steps of iterative refinement are performed, but usually only one or two steps are required.
The complex analogue of this routine is F07CVF (ZGTRFS).

10 Example

This example solves the equations

$$
A X=B
$$

where A is the tridiagonal matrix

$$
A=\left(\begin{array}{lllll}
3.0 & 2.1 & 0 & 0 & 0 \\
3.4 & 2.3 & -1.0 & 0 & 0 \\
0 & 3.6 & -5.0 & 1.9 & 0 \\
0 & 0 & 7.0 & -0.9 & 8.0 \\
0 & 0 & 0 & -6.0 & 7.1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rr}
2.7 & 6.6 \\
-0.5 & 10.8 \\
2.6 & -3.2 \\
0.6 & -11.2 \\
2.7 & 19.1
\end{array}\right)
$$

Estimates for the backward errors and forward errors are also output.

10.1 Program Text

```
Program f07chfe
    FO7CHF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Use Statements ..
    Use nag_library, Only: dgtrfs, dgttrf, dgttrs, nag_wp, x04caf
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter : : nin = 5, nout \(=6\)
    .. Local Scalars ..
    Integer :: i, ifail, info, ldb, ldx, \(\mathrm{n}, \mathrm{nrhs}\)
    .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: b(:,:), berr(:), d(:), df(:), dl(:), \&
```

```
                                    dlf(:), du(:), du2(:), duf(:),
    ferr(:), work(:), x(:,:)
    The NAG name equivalent of dgttrf is f07cdf
    Call dgttrf(n,dlf,df,duf,du2,ipiv,info)
    If (info==0) Then
        Solve the equations AX = B
        The NAG name equivalent of dgttrs is f07cef
        Call dgttrs('No transpose',n,nrhs,dlf,df,duf,du2,ipiv,x,ldx,info)
        Improve the solution and compute error estimates
        The NAG name equivalent of dgtrfs is fO7chf
        Call dgtrfs('No transpose',n,nrhs,dl,d,du,dlf,df,duf,du2,ipiv,b,ldb,x, &
            ldx,ferr,berr,work,iwork,info)
        Print the solution and the forward and backward error
        estimates
        ifail: behaviour on error exit
            =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
        ifail = O
        Call x04caf('General',' ',n,nrhs,x,ldx,'Solution(s)',ifail)
        Write (nout,*)
        Write (nout,*) 'Backward errors (machine-dependent)'
        Write (nout,99999) berr(1:nrhs)
        Write (nout,*)
        Write (nout,*) 'Estimated forward error bounds (machine-dependent)'
        Write (nout,99999) ferr(1:nrhs)
    Else
        Write (nout,99998) 'The (', info, ',', info, ')', &
            , element of the factor U is zero'
    End If
99999 Format ((3X,1P,7E11.1))
```



```
    End Program f07chfe
```


10.2 Program Data

```
FO7CHF Example Program Data
    5 2
    2.1 -1.0 1.9 8.0
    3.0 2.3 -5.0 -0.9 7.1
    3.4 3.6 7.0 -6.0 :End of matrix A
    2.7 6.6
-0.5 10.8
    2.6 -3.2
    0.6 -11.2
    2.7 19.1 :End of matrix B
```


10.3 Program Results

```
F07CHF Example Program Results
Solution(s)
\begin{tabular}{rrr} 
& 1 & 2 \\
1 & -4.0000 & 5.0000 \\
2 & 7.0000 & -4.0000 \\
3 & 3.0000 & -3.0000 \\
4 & -4.0000 & -2.0000 \\
5 & -3.0000 & 1.0000
\end{tabular}
Backward errors (machine-dependent)
    7.2E-17 5.9E-17
Estimated forward error bounds (machine-dependent)
    9.4E-15 1.4E-14
```

