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1  Scope of the Chapter

This chapter is concerned with basic linear algebra routines which perform elementary algebraic
operations involving scalars, vectors and matrices. It includes routines which conform to the
specifications of the BLAS (Basic Linear Algebra Subprograms).

2 Background to the Problems

A number of the routines in this chapter meet the specification of the Basic Linear Algebra Subprograms
(BLAS) as described in Lawson et al. (1979), Dodson et al. (1991), Dongarra et al. (1988) and Dongarra
et al. (1990). The first reference describes a set of routines concerned with operations on scalars and
vectors: these will be referred to here as the Level-0 and the Level-1 BLAS; the second reference
describes a set of routines concerned with operations on sparse vectors: these will be referred to here as
the Level-1 Sparse BLAS; the third reference describes a set of routines concerned with matrix-vector
operations: these will be referred to here as the Level-2 BLAS; and the fourth reference describes a set
of routines concerned with matrix-matrix operations: these will be referred to here as the Level-3 BLAS.

More generally we refer to the scalar routines in the chapter as Level-0 routines, to the vector routines as
Level-1 routines, to the matrix-vector and matrix routines as Level-2 routines, and to the matrix-matrix
routines as Level-3 routines. The terminology reflects the number of operations involved. For example, a
Level-2 routine involves O(n?) operations for an n x n matrix.

2.1 The Use of BLAS Names

Many of the routines in other chapters of the Library call the routines in this chapter, and in particular a
number of the BLAS are called. These routines are usually called by the BLAS name and so, for correct
operation of the Library, it is essential that you do not attempt to link your own versions of these
routines. If you are in any doubt about how to avoid this, please consult your computer centre or the
NAG Response Centre.

The BLAS names are used in order to make use of efficient implementations of the routines when these
exist. Such implementations are stringently tested before being used, to ensure that they correctly meet
the specification of the BLAS, and that they return the desired accuracy (see, for example, Dodson ef al.
(1991), Dongarra et al. (1988) and Dongarra et al. (1990)).

2.2 Background Information

Most of the routines in this chapter implement straightforward scalar, vector and matrix operations that
need no further explanation beyond a statement of the purpose of the routine. In this section we give
some additional background information to those few cases where additional explanation may be
necessary. A sub-section is devoted to each topic.

2.2.1 Real plane rotations

There are a number of routines in the chapter concerned with setting up and applying plane rotations.
This section discusses the real case and the next section looks at the complex case. For further
background information see Golub and Van Loan (1996).

A plane rotation matrix for the (¢,j) plane, R;j, is an orthogonal matrix that is different from the unit
matrix only in the elements 74, 7;;, r;; and 7. If we put

R= Tii  Tij 1
(Tﬁ rii )’ ®
then, in the real case, it is usual to choose R;; so that

Rz( ¢ Z), c=cosf, s=sinb.

—S

An exception is routine FOOFPF which applies the so-called symmetric rotation for which
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R:(E _i) (2)

The application of plane rotations is straightforward and needs no further elaboration, so further
comment is made only on the construction of plane rotations.

The most common use of plane rotations is to choose ¢ and s so that for given a and b,

(22) (2)-(5) g

In such an application the matrix R is often termed a Givens rotation matrix. There are two approaches
to the construction of real Givens rotations in Chapter F06.

The BLAS routine FO6AAF (DROTG), see Lawson et al. (1979) and Dodson and Grimes (1982),
computes ¢, s and d as

d= 0<a2 + 62)1/2,
_Ja/d, d#0, _Jb/d, d#0,
C‘{l, ~o, S‘{o, d=o, @
_ [ signa, a| > [b|
where 0 = { signb, a| < |b|’
The value z defined as
_Js, [s] <c or ¢=0
Z_{l/c, 0<|e<s (5)
is also computed and this enables ¢ and s to be reconstructed from the single value z as
07 z=1 1, z=1
c= (1—22)1/2, |2| <1 §=4q % R
1/z, EES! 1= | >1

The other Chapter FO6 routines for constructing Givens rotations are based on the computation of the
tangent, ¢ = tan6. ¢ is computed as

0, b=0

b/a, |b| < |a|.flmaz,b # 0 (6)
sign(b/a).flmaz, |b| > |a|.flmax

sign(b).flmaz, b#0,a=0

where flmaz = 1/flmin and flmin is the small positive value returned by X02AMF. The values of ¢ and
s are then computed or reconstructed via ¢ as

1/(1+ )2, /eps < |t < 1/\/eps ct,  /eps < |t <1/\/eps
c=41, [t| < \/eps s=1t, lt| < \/eps (7)
1/|t], [t| > 1/./eps signt, |t| > 1/,/eps

where eps is the machine precision. Note that c is always non-negative in this scheme and that the same
expressions are used in the initial computation of ¢ and s from a and b as in any subsequent recovery of
c and s via t. This is the approach used by many of the NAG Library routines that require plane
rotations. d is computed simply as

d=c.a+ s.b.

You need not be too concerned with the above detail, since routines are provided for setting up,
recovering and applying such rotations.
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Another use of plane rotations is to choose ¢ and s so that for given x, y and z

() Gy ¢ 2)=63) ®

In such an application the matrix R is often termed a Jacobi rotation matrix. The routine that generates
a Jacobi rotation (FO6BEF) first computes the tangent ¢ and then computes ¢ and s via t as described
above for the Givens rotation.

2.2.2 Complex plane rotations

In the complex case a plane rotation matrix for the (4, j) plane, R;; is a unitary matrix and, analogously
to the real case, it is usual to choose R;; so that

R=(0%) KRk, o)

where a denotes the complex conjugate of a.

The BLAS (see Lawson et al. (1979)) do not contain a routine for the generation of complex rotations,
and so the routines in Chapter FO6 are all based upon computing ¢ and s via ¢ = b/a in an analogous
manner to the real case. R can be chosen to have either ¢ real, or s real and there are routines for both
cases.

When c is real then it is non-negative and the transformation

() ()=6) w

is such that if a is real then d is also real.

When s is real then the transformation

(2 ()-(

is such that if b is real then d is also real.

2.2.3 Elementary real (Householder) reflections

There are a number of routines in the chapter concerned with setting up and applying Householder
transformations. This section discusses the real case and the next section looks at the complex case. For
further background information see Golub and Van Loan (1996).

A real elementary reflector, P, is a matrix of the form
P=1—puu', pu'u=2, (12)

where p is a scalar and u is a vector, and P is both symmetric and orthogonal. In the routines in Chapter
F06, u is expressed in the form

u= <i>, ¢ a scalar (13)

because in many applications ¢ and z are not contiguous elements. The usual use of elementary reflectors
is to choose p and w so that for given o and x

P(i) = <g>, o and (3 scalars. (14)

Such a transformation is often termed a Householder transformation. There are two choices of p and u
available in Chapter FO06.

The first form of the Householder transformation is compatible with that used by LINPACK (see
Dongarra et al. (1979)) and has
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p=1/C (15)
This choice makes ( satisfy
1<¢<2.
The second form, and the form used by many of the NAG Library routines, has
w=1 (16)
which makes
1<¢<V2.
In both cases the special setting
(=0 (17)

is used by the routines to flag the case where P = I.

Note that while there are routines to apply an elementary reflector to a vector, there are no routines
available in Chapter F06 to apply an elementary reflector to a matrix. This is because such
transformations can readily and efficiently be achieved by calls to the matrix-vector Level 2 BLAS
routines. For example, to form PA for a given matrix

PA = (I-puwu")A=A— puu™A

A—pub’, b= ATu, (18)

and so we can call a matrix-vector product routine to form b = ATu and then call a rank-one update
routine to form (A — pub"). Of course, we must skip the transformation when ¢ has been set to zero.
2.2.4 FElementary complex (Householder) reflections
A complex elementary reflector, P, is a matrix of the form

P=1—puut, pufu=2, preal,

where v denotes the complex conjugate of «, and P is both Hermitian and unitary. For convenience in
a number of applications this definition can be generalized slightly by allowing p to be complex and so
defining the generalized elementary reflector as

P=1I—pud, |pfuu=p+p (19)
for which P is still unitary, but is no longer Hermitian.
The Chapter FO6 routines choose p and ¢ so that
Re(u) =1, Im(¢) =0 (20)

and this reduces to (12) with the choice (16) when p and w are real. This choice is used because p and u
can now be chosen so that in the Householder transformation (14) we can make

Im(8) =0
and, as in the real case,
1<¢<V2.

Rather than returning i and ( as separate parameters the Chapter FO6 routines return the single complex
value 0 defined as

0=C+i.Im(p), i=+v-1.
Obviously ¢ and p can be recovered as
¢=Re(d), p=1+1:iIm(0).

The special setting
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is used to flag the case where P = I, and
Re(#) <0, Im(#) #0

is used to flag the case where

P—(g ?), ~ a scalar (21)

and in this case 6 actually contains the value of ~. Notice that with both (18) and (21) we merely have to
supply 6 rather than 6 in order to represent P,

3 Recommendations on Choice and Use of Available Routines

3.1 Naming Scheme
3.1.1 NAG names

Table 1 shows the naming scheme for the routines in this chapter.

Level-0 Level-1 Level-2 Level-3

integer Chapter FO6 routine - FO6D F - —

‘real’ BLAS routine FO6A F FO6E F FO06P F FO06Y_F

‘real’ Chapter F06 routine F06B F FO06F F F06Q F -
FO6R F

‘complex’ BLAS routine - F06G F F06S F F06Z F

‘complex’ Chapter FO6 routine F06C_F FO6H F FO06T F —
FO6U F

‘mixed type’ BLAS routine - Fo6J F - —

‘mixed type’ Chapter FO6 routine - FO6K F FO06V_F —

‘real’ and ‘complex’ LAPACK routines - - FO6W _F FO06W _F

Table 1

The heading ‘mixed type’ is for routines where a mixture of data types is involved, such as a routine that
returns the real Euclidean length of a complex vector. In future marks of the Library, routines may be
included in categories that are currently empty and further categories may be introduced.

3.1.2 BLAS names

Those routines which conform to the specifications of the BLAS may be called either by their NAG
names or by their BLAS names.

In many implementations of the NAG Library, references to BLAS names may be linked to an efficient
machine-specific implementation of the BLAS, usually provided by the vendor of the machine. Such
implementations are stringently tested before being used with the NAG Library, to ensure that they
correctly meet the specifications of the BLAS, and that they return the desired accuracy. Use of BLAS
names is recommended for efficiency.

References to NAG routine names (beginning F06-) are always linked to the code provided in the NAG
Library and may be significantly slower than the equivalent BLAS routine.

The names of the Level-2 and Level-3 BLAS follow a simple scheme (which is similar to that used for
LAPACK routines in Chapters FO7 and F08). Each name has the structure XYYZZZ, where the
components have the following meanings:

— the initial letter X indicates the data type (real or complex) and precision:
S real, single precision (in Fortran, REAL)

D real, double precision (in Fortran, DOUBLE PRECISION)
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C complex, single precision (in Fortran, COMPLEX)
Z complex, double precision (in Fortran, COMPLEX*16 or DOUBLE COMPLEX)

— the second and third letters YY indicate the type of the matrix A (and in some cases its storage
scheme):

GE  general
GB  general band
SY  symmetric
SP  symmetric (packed storage)
SB  symmetric band
HE (complex) Hermitian
HP  (complex) Hermitian (packed storage)
HB (complex) Hermitian band
TR  triangular
TP  triangular (packed storage)
TB  triangular band
— the remaining 1, 2 or 3 letters ZZZ indicate the computation performed:
MV  matrix-vector product
MM  matrix-matrix product
R rank-1 update
R2  rank-2 update
RK  rank-k update
R2K rank-2k update
SV solve a system of linear equations
SM  solve a system of linear equations with a matrix of right-hand sides

Thus the routine DGEMV performs a matrix-vector product involving a real general matrix in double
precision; the corresponding routine for a complex general matrix is ZGEMV.

The names of the Level-1 BLAS mostly follow the same convention for the initial letter (S-, C-, D- or Z-
), except for a few involving data of mixed type, where the first two characters are precision-dependent.

3.1.3 LAPACK names

There are some LAPACK routines in this chapter that have BLAS-like functionalty. Four are equivalent
to BLAS routines but for matrices stored in Rectangular Full Packed (RFP) format. The naming
convention for these is as above with the addition of the matrix types:

HF  (complex) Hermitian (RFP storage)
TF  triangular (RFP storage)
SF  symmetric (RFP storage)

There are an additonal two that compute norms of RFP matrices. These have second and third letters LA
(signifying LAPACK), fourth letter N (signifying norm), and fifth and sixth letter signifying matrix type
as above. For example ZLANHF computes the norm of a Hermitian matrix in RFP format.

3.2 The Level-0 Scalar Routines

The Level-0 routines perform operations on scalars or on vectors or matrices of order 2.
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3.3 The Level-1 Vector Routines

The Level-1 routines perform operations either on a single vector or on a pair of vectors.

3.4 The Level-2 Matrix-vector and Matrix Routines

The Level-2 routines perform operations involving either a matrix on its own, or a matrix and one or
more vectors.

3.5 The Level-3 Matrix-matrix Routines

The Level-3 routines perform operations involving matrix-matrix products.

3.6 Vector Arguments

Vector arguments (except in the Level-1 Sparse BLAS) are represented by a one-dimensional array,
immediately followed by an increment parameter whose name consists of the three characters INC
followed by the name of the array. For example, a vector x is represented by the two parameters X and
INCX. The length of the vector, n say, is passed as a separate parameter, N.

The increment parameter is the spacing (stride) in the array between the elements of the vector. For
instance, if INCX = 2, then the elements of x are in locations x(1),z(3),...,z(2n — 1) of the array X
and the intermediate locations x(2),z(4),...,2(2n — 2) are not referenced.

When INCX > 0, the vector element x; is in the array element X(1+ (i — 1) x INCX). When
INCX < 0, the elements are stored in the reverse order so that the vector element x; is in the array
element X(1 — (n — i) x INCX) and hence, in particular, the element x,, is in X(1). The declared length
of the array X in the calling subroutine must be at least (1 + (N — 1) x [INCX]).

Negative increments are permitted only for:
Level-1 routines which have more than one vector argument;
Level-2 BLAS routines (but not for other Level-2 routines)

Zero increments are formally permitted for Level-1 routines with more than one argument (in which case
the element X(1) is accessed repeatedly), but their use is strongly discouraged since the effect may be
implementation-dependent. There is usually an alternative routine in this chapter, with a simplified
parameter list, to achieve the required purpose. Zero increments are not permitted in the Level-2 BLAS.

In the Level-1 Sparse BLAS, each routine operates on two vectors x and y. The vector z is stored as a
compressed sparse vector, and is represented by the three parameters NZ, X and INDX; NZ is the
number of ‘interesting’ (usually nonzero) elements of z, and INDX is a one-dimensional index array
such that

z(INDX(k)) = X(k), k=1,2,... ,NZ

The (mathematical) length of the vector, n say, does not need to be supplied; it is assumed that
1 <INDX(k) < n. For example, the vector

z=(0,4,0,0,1,0,0,0,6,0)

could be represented with NZ =13, X =(4,1,6), INDX = (2,5,9). The second vector y is stored
conventionally, and is represented simply by the one-dimensional array Y, with y; in Y (4); the increment
is assumed to be 1. Only the elements Y (INDX(k)) are referenced.

Non-positive values of NZ are permitted, in which case the routines return immediately — except that
functions set their value to zero before returning. For those routines where Y is an output parameter the
values in the array INDX must be distinct; violating this condition may yield incorrect results.

3.7 Matrix Arguments and Storage Schemes

In this chapter the following different storage schemes are used for matrices:

F06.8 Mark 25



F06 — Linear Algebra Support Routines Introduction — F06

— conventional storage in a two-dimensional array;

— packed and RFP storage for symmetric, Hermitian or triangular matrices;
— band storage for band matrices;

— storage for spiked matrices.

These storage schemes are compatible with those used in Chapters FO7 and FOS8. (Different schemes for
packed or band storage are used in a few older routines in Chapters FO1, F02, FO3 and F04.)

Chapter FO1 provides some utility routines for conversion between storage schemes.

In the examples, * indicates an array element which need not be set and is not referenced by the
routines. The examples illustrate only the relevant leading rows and columns of the arrays; array
parameters may of course have additional rows or columns, according to the usual rules for passing array
parameters in Fortran.

3.7.1 Conventional storage

Please see Section 3.3.1 in the FO7 Chapter Introduction for full details.

3.7.2 Packed storage
Please see Section 3.3.2 in the FO7 Chapter Introduction for full details.

3.7.3 Rectangular Full Packed (RFP) storage
Please see Section 3.3.3 in the FO7 Chapter Introduction for full details.

3.7.4 Band storage
Please see Section 3.3.4 in the FO7 Chapter Introduction for full details.

3.7.5 Unit triangular matrices

Please see Section 3.3.5 in the FO7 Chapter Introduction for full details.

3.7.6 Real diagonal elements of complex Hermitian matrices

Please see Section 3.3.6 in the FO7 Chapter Introduction for full details.

3.7.7 Spiked matrices

A few routines in this chapter (FO6QSF, FO6QWF, FO6TSF and FO6TWF) deal with upper spiked
matrices. These are upper triangular matrices with an additional nonzero row or column below the
diagonal.

The position of the spike is defined by indices k) and k;; it is assumed that k; < k;. A row spike has

nonzero elements in the kpth row, ap,, for k =k, ki +1,...,k, —1; a column spike has nonzero
elements in the &k th column, ay, for k =k, k1 +1,...,ky — 1. For example, when n =6, k; =2 and
kz =5:
Row spike Column spike

app a2 a3 a4 a5 Qe ayjp a2 a3 a4 a5 ale

Q2 Q3 G4 Q25 Q26 Q23 Q4 Q25 Q26

a3 a34 azs 36 a3y a3z a34 a35 Q36

Q44 Q45 Q46 a4 Q44 Q45 Q46

Qs Q53  As4  As55 Q56 as2 ass  as6

a6 a6
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The storage scheme adopted by the routines in this chapter is for the upper triangular part of the spiked
matrix to be stored conventionally in a two-dimensional array A, with the subdiagonal elements of the
spike stored in a separate vector.

3.8 Option Parameters

Many of the routines in this chapter have one or more option parameters, of type CHARACTER. The
descriptions in the routine documents refer only to upper-case values (for example UPLO ='U' or
UPLO ="'L"); however, in every case, the corresponding lower-case characters may be supplied (with the
same meaning). Any other value is illegal.

A longer character string can be passed as the actual parameter, making the calling program more
readable, but only the first character is significant. (This is a feature of Fortran.) For example:

CALL DTRSV(’Upper’,’Transpose’,’Non-unit’,...)
The following option parameters are used in this chapter:
If TRANS ='N', operate with the matrix (Not transposed);
if TRANS ='T', operate with the Transpose of the matrix;
if TRANS ="C/, operate with the Conjugate transpose of the matrix.
If UPLO ="U', upper triangle or trapezoid of matrix;
if UPLO ='L', lower triangle or trapezoid of matrix.
If DIAG = "U', unit triangular;
if DIAG ='N', nonunit triangular.
If SIDE ='L', operate from the left-hand side;
if SIDE ='R’, operate from the right-hand side.
If PIVOT ="'V, variable pivot (in applying a sequence of plane rotations);
if PIVOT ='B', bottom pivot;
if PIVOT ='"T', top pivot;
if PIVOT ="F, fixed pivot.
If DIRECT = 'B', backward sequence of plane rotations;
if DIRECT ="F', forward sequence of plane rotations.
If NORM ="1"' or 'O', 1-norm of a matrix;
if NORM ="I', co-norm of a matrix;
if NORM ='F' or 'E', Frobenius or Euclidean norm of a matrix;
if NORM = 'M', maximum absolute value of the elements of a matrix (not strictly a norm).
If MATRIX ='G', general (rectangular or square) matrix;
if MATRIX = 'U', upper trapezoidal or triangular matrix;
if MATRIX ='L', lower trapezoidal or triangular matrix.
if TRANSR = 'N', matrix stored in normal RFP format (Not transposed).
if TRANSR ="'T', transpose of the matrix stored in RFP format.
if TRANSR ="C', conjugate transpose of the matrix stored in RFP format.

3.8.1 Matrix norms

The option parameter NORM specifies different matrix norms whose definitions are given here for
reference (for a general m by n matrix A):
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One-norm (NORM ='0'" or 'l"):

m

IA]l, = max " |a;;
|

Infinity-norm (NORM ='T'):

B

n
4]l = max>"as

Frobenius or Euclidean norm (NORM ='F' or 'E"):

Al = (ZZH)/

=1 j=1
If A is symmetric or Hermitian, ||Al|, = || 4] ..

The parameter NORM can also be used to specify the maximum absolute value man7j|a7:j{ af
NORM = 'M"), but this is not a norm in the strict mathematical sense.

3.9 Error Handling

Routines in this chapter do not use the usual NAG Library error-handling mechanism, involving the
parameter [FAIL.

If one of the Level-2 or Level-3 BLAS routines is called with an invalid value of one of its parameters,
then an error message is output on the error message unit (see X04AAF), giving the name of the routine
and the number of the first invalid parameter, and execution of the program is terminated. The following
values of parameters are invalid:

— any value of the character parameters TRANS, TRANSA, TRANSB, UPLO, SIDE or DIAG,
whose meaning is not specified;

— a negative value of any of the parameters M, N, K, KL or KU;

— too small a value for any of the leading dimension parameters;

— a zero value for the increment parameters INCX and INCY.
Zero values for the matrix dimensions M, N or K are considered valid.

The other routines in this chapter do not report any errors in their parameters. Normally, if called, for
example, with an unspecified value for one of the option parameters, or with a negative value of one of
the problem dimensions M or N, they simply do nothing and return immediately.

4  Functionality Index

Level 0 (Scalar) operations,
complex numbers,

apply similarity rotation to 2 by 2 Hermitian matrix ...........cccccvvveeeeeeennnn. FO6CHF
generate a plane rotation, storing the tangent, real cosine........................ FO6CAF
generate a plane rotation, storing the tangent, real sine.............ccccceeennn. FO6CBF
quotient of two numbers, with overflow flag ............cccevvvviiiiiiiiiiiiiiinnnnn, FO6CLF
recover cosine and sine from given tangent, real cosine................cceeee... FO6CCF
recover cosine and sine from given tangent, real sSine .............ccccvvveeen... FO6CDF
real numbers,
apply similarity rotation to 2 by 2 symmetric matriX..........ccccuvvvveereeeennnn. FO6BHF
COmMPULE (A2 4 B2) 1 /2wt FO6BNF
compute Euclidean norm from scaled form.............ccccovvvvvviviviiiiiiiiiiinnnnnn. FO6BMF
eigenvalue of 2 by 2 symmetric matriX ..............eeevvververrrirerereeeninnnnnnnnns FO6BPF
generate a Jacobi plane rotation ...........ccceeeeeeecciiiiiiiiieeeeeeeriiiiiieeeeee e FO6BEF
generate a Plane TOtAtION .....eeeeeeiiiiiiiiiiiee e e e et e e e e e e e e e e FO6AAF (DROTG)
generate a plane rotation storing the tangent............ccccceeevvviiiiiiiieeeeeeeennn. FO6BAF
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quotient of two numbers, with overflow flag ..........ccc.cccoviiiiiiniiinnn . FO6BLF
recover cosine and sine from given tangent.............cccccceveeeeeeeeeiiicnnnnnnnnn. FO6BCF

Level 1 (Vector) operations,
complex vector(s),

add scalar times a vector to another VEeCtOr............cccvveeiiiiiiiiiiiiiieeeeeeenn, FO6GCF (ZAXPY)
apply a complex plane rotation .............cceeeeeeeeciiiiiiieieeeeeeeieiiiireeeeeeeeeennn FO6HPF

apply an elementary reflection to @ VECtOT .......evvvviiiiiiieeeeiiiiiiiieeeeeeeee, FO6HTF

apply a real plane rotation .........cccvevviiiiieeeeiiiiiiiiieeee e FO6KPF (ZDROT)
broadcast a scalar iNt0 @ VECTOT......cccevviriiiiiniiiiiieiiiiiee e FO6HBF

copy a real vector to a compleX VECtOT.............oeevvvviiiiiiiiiiiiiiiiiiiiiinnnnnn FO6KFF

[o7e] o) B <101 1o ) U FO6GFF (ZCOPY)
dot product of two vectors, conjugated...........cccuvviiiiiieeeiiiiiiiiiiiieeeeeeenn FO6GBF (ZDOTC)
dot product of two vectors, unconjugated ..........ccceeverieeeeeiiiiiiiiiiiieeeeeenen FO6GAF (ZDOTU)
Euclidean norm of @ VECIOT............cooiiiiiiiiiiiiiiiiiiiiee e FO6JJF (DZNRM2)
generate an elementary reflection ..........cccoovviiiiiiiiiiiiiiiiiiiieee e, FO6HRF

generate a sequence of plane rotations.................oeevvvvvviivivirivieeeieeeennnn. FO6HQF

index of element of largest absolute value...........ccccccceiiiiniiiiiiiiiennn, FO6JMF (IZAMAX)
multiply vector by a compleX Scalar.........cccceeeevviiiiiiiiiiiiieeeeeeeeiiiieeeen. FO6GDF (ZSCAL)
multiply vector by a complex scalar, preserving input vector.................. FO6HDF

multiply vector by a real scalar................oevvvviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeennn. FO6JDF (ZDSCAL)
multiply vector by a real scalar, preserving input vector ...................ee... FO6KDF

multiply vector by complex diagonal matrixX..........cccccvvevrreeeeereiseennnnnennn. FO6HCF

multiply vector by real diagonal matriX ...........ccooeecuvriiiiireeeeeerneiiiieeeen. FO6KCF

multiply vector by reciprocal of a real scalar............ccccceveeeeeeiiiinnnnnnnnn... FO6KEF

NEZALE @ VECLOT ...uiieeeeee e e e ettt e e e e e e eeaeaas FO6HGF

sum of absolute values of vector-elements.............ccccceeevvviiiiiiiiiieeeeeennnn. FO06JKF (DZASUM)
] B A IR T 1) U FO6GGF (ZSWAP)
update Euclidean norm in scaled form...........cccceevviiiiiiiiiiiieeeeeeenineee, FO6KJF

Complex vector(s),
apply plane rotation,

real coSine, COMPIEX SINE ..............cceiiviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeaaaaens FO6HMF (ZROT)
integer vector(s),
broadcast a scalar iNt0 @ VECLOT.......c.uuvuvieiiieeeeeeiiiiiiiiiiieeeeeeeeeeeeeeinineeeeens FO6DBF
COPY @ VECTOT ettt e e e e e e e e e e e e e e e eaeaeaeeeeeeeeeateeeaeaeebeebbbbbbbeee s FO6DFF
real vector(s),
add scalar times a vector to another Vector.............cc.evvvvvvvvvvvivvvieeennnnnnnnn. FO6ECF (DAXPY)
apply an elementary reflection to a vector (Linpack style)..........ccccceeeenn. FO6FUF
apply an elementary reflection to a vector (NAG style)......ccccvvveveeeeeennn. FO6FTF
apply a symmetric plane rotation to tWo VeCtOTS...........cceevvevuvrrvrirreeeeeennn. FO6FPF
APPLY Plane TOtAtION. . ..uiiiiieeeeieiiiiiiiiieeee e e et e e e e e e e e e e e FO6EPF (DROT)
broadcast a scalar iNt0 @ VECTOT......cccovvuriiiiiniiiiieiniiiete e FO6FBF
COPY & VECTOT 1ttt eeee e e e e e e e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeaaeeenbabeaebeeaaaenans FO6EFF (DCOPY)
cosine of angle between tWO VECTOTS........ccevvecevviiiiiiiireeeeeeiiiiiiieeeeeeeeeennn FO6FAF
dot product Of tWO VECIOTS.....ccuueiiiiiiiiieee e e e e FO6EAF (DDOT)
elements of largest and smallest absolute value ............cooeveiiiiiieeeeneennn. FO6FLF
Euclidean norm of @ VECIOT.............ooiiiiiiiiiiiiiiiiiieee e FO6EJF (DNRM?2)
generate an elementary reflection (Linpack style).............ovvvvvivviiiiiiinnnnnnn. FO6FSF
generate an elementary reflection (NAG style).........oovvvvviiiiiiviiiiiiininnnnnn. FO6FRF
generate a sequence of plane rotations.................oeevviiiiiiiiiiiiiiiiniiinnnn. FO6FQF
index of element of largest absolute value..........ccccccevveeeiiiiiiiiiiiiiieeeeen, FO6JLF (IDAMAX)
index of last non-negligible element .............cccccvviiiiiiiiieiiiiiiiiiiiiieeeeeen, FO6KLF
multiply vector by a scalar...............ooovviiiiiiiiiiiiiii e FO6EDF (DSCAL)
multiply vector by a scalar, preserving input Vector .........cccceevvvvuurrreeeeeen. FO6FDF
multiply vector by diagonal matriX ...........ceeeeeeeeiiiiiiiiiiiiieeeeeeeeeeeiiieeeenn. FO6FCF
multiply vector by reciprocal of a scalar............ccccccviiiiiiiieeieeiiiii, FO6FEF
NEZALE @ VECLOT ...t eeeeee et e e ettt e e e e e e e e aeaeaas FO6FGF
sum of absolute values of vector-elements...................oevvvvvriiiiviiiieennnnnnnn. FO6EKF (DASUM)
SWAP TWO VECTOTS. ..utttiiiiiiiieieee e e e e e e e e e e e et e e e e eee et e e ettt eeeeeeeeeeeeeeabbeebeeaes FO6EGF (DSWAP)
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update Euclidean norm in scaled form...........cccccevviiiiiiiiiiieeeeeeiiiiieeeen, FO6FJF
weighted Euclidean norm of @ VeCtOr........ccivevviiiiiiiiiiiiiiiiieeeeeeeeiiieee, FO6FKF

Level 2 (Matrix-vector and matrix) operations,
complex matrix and vector(s),
apply sequence of plane rotations to a rectangular matrix,

complex €oSINE, 1Al SINE ........cceevurriiiiiiieeeeeeiiiiiieeee e e e e e e e e e eeeeeraeeeeas FO6TYF
real coSINe, COMPIEX SINE .....cceeririeiiiiiiiiiieeeeeeeeeiiiiieeeeeeeeeeeeeeeeraeeeeas FO6TXF
real coSine and SINE...........ccceeieiiiiiiiiiiiiiiiieeiiiie e FO6VXF

compute a norm or the element of largest absolute value,
Dand MATIX «oeeeeeiiiiiiiiiiiiieeeee e FO6UBF
GENETAL MALTIX 1ieiiiiiiiiieie e e e e e ettt e e e e e e e e et eeeaeeeeeeesenssensaaeeeas FO6UAF
Hermitian band matriX...........eeeeiriiirieiniiiiie e FO6UEF
Hermitian MatriX .......eeeeiriieeeeiiiiiiee ettt e et e e e e e FO6UCF
Hermitian matrix, packed form..........ccccccoeiviiiiiiiiiiiiiiieeeeeeee, FO6UDF
Hermitian matrix, RFP format...............cccvvvviiiiiiiiiiiiieiieeeeeeeeeeeeeeeee, FO6WNF (ZLANHF)
Hermitian tridiagonal matriX.........cccuveeiiiieiieniiiiiiiiiceee e FO6UPF
HeSSENDETrg MALTIX ...ueeeviiiiiieieeeeiiiiiie et e e e e FO6UMF
Symmetric band MAtIiX .......cccvvviiiiiiiieeeeeeiiiiiieeeee e e e e e e e eiiareereeeeee e FO6UHF
SYMIMEITIC MALIIX eevtitrreeeeeeiiiiiiiiieeeeeeeeeseaaineaeereeeeeeesseaaannnnrrreeeeaeeesens FO6UFF
symmetric matrix, packed form.......ccccooeeeeeeiieeiieiiiiiiii FO6UGF
trapezoidal MAatriX.........uvveiiiiiiiiiiiiie e FO6UJF
triangular band matriX ..o FO6ULF
triangular matrix, packed form..........cccccooiiiiiiiiiiiiii FO6UKF
tridiagonal MALIIX ...cc.evvviiiiiieeeee e e e e e e e e e e e e FO6UNF

compute upper Hessenberg matrix by applying sequence of plane FO6TVF

rotations to an upper triangular MatriX........cceevvriiiiiiiiiiiiieeeeeeeeiiiiieeeeee.

compute upper spiked matrix by applying sequence of plane rotations to FO6TWF

an upper triangular MAtriX........cccvvviiiiiieeeeeeeiiiiiiiiieeeeeeeeeeeiirrereeeeeaeens

Matrix NIHALZATION .....veiiiiiiiiiiiiiiie e FO6THF

matrix-vector product,
Hermitian band mMatriX.............ooooiiiiiiiiiiiiiiiiiiiisee e e e e e eeeeeaens FO6SDF (ZHBMV)
Hermitian MatriX .........ceeeiiiiiiiiiiiiiiiciieeieee e e e e e e e e eeeeeaeeas FO6SCF (ZHEMYV)
Hermitian packed matriX ...........oooiiiiiiiiiiiiiiiiieeee e FO6SEF (ZHPMV)
rectangular band MatriX.........ceeeeiiriiiiiiiiiieeeee e e e e e e e e FO06SBF (ZGBMYV)
TECTANGUIAT MNAITIX.....eieiiiiiiieeeee e e e ettt e e e e e e e ettt e e e e e e e e e e e eeeeeeeeeas FO6SAF (ZGEMYV)
SYMMELTIC MALTIX .eevvvvrrrrvrrririrrreeeeeeneennnnssaseesaaaeasaaeeaaasssaserereseeessessssssnes FO6TAF
symmetric packed mMatriX.........coooueieiiiiiiiieiiiiieee e FO6TCF
triangular band mMatriX ..ot FO6SGF (ZTBMV)
trIANZUIAT MALIIX .ot e e e e e e e e e e e e e eeeraaeeeas FO6SFF (ZTRMV)
triangular packed MatriX........ccoeveriiiiiiiiiiieiee e FO6SHF (ZTPMV)

permute rows or columns of a matrix,
permutations represented by an integer array .........cccccceeeeeeeriiiinreieeeen. FO6VIJF
permutations represented by a real array...........cccooeeeciiiiiiiiiieeeeeiens FO6VKF

QR factorization by sequence of plane rotations,
of rank-1 update of upper triangular matrix........ccccceveereeeeeennnicnnnennnn. FO6TPF
of upper triangular matrix augmented by a full row ...........ccccvvvnieen. FO6TQF

QR factorization of UZ or R(Q factorization of ZU, where U is upper = FOO6TTF

triangular and Z is a sequence of plane rotations...........ccccceevvvvuuvreeneeen.

QR or R(Q factorization by sequence of plane rotations,
of upper Hessenberg matriX .......ccuvvveieiiieeeeeriiiiiiiiiieeee e e e e e FO6TRF
of upper spiked MAtriX .......ceeviiiiiiiiiiiiiiiie e FO6TSF

rank-1 update,
Hermitian mMatriX ....oceeeveiiiiieieieiiiiieceee e FO6SPF (ZHER)
Hermitian packed matriX ..........coooeeiiiiiiiiiieeeeeeeieee e, FO06SQF (ZHPR)
rectangular matrix, conjugated VECtOT..........ccoevvveiiriiiiiieeeeeeeeiiiinieeen. FO6SNF (ZGERC)
rectangular matrix, unconjugated VECtOT ..........cccccuvviiriiieeeeeeenniiiiiineen. FO6SMF (ZGERU)
SYMIMEITIC MALIIX eevvtrirereeeeeiiiiiiieeeeeeeeeeesaaieeeereteeeeeesssaaannnnsrarereaeeesens FO6TBF
symmetric packed MatriX........ccoeeeeeeeeiieieiiiiiiieeceeeeeeee FO6TDF

Mark 25 F06.13



Introduction — F06 NAG Library Manual

rank-2 update,

Hermitian mMatriX ......c..vvvviiiieeeeeeeiiiiiiiieee e e e e e e e eeeiiiieeee e e e e e e e e e eseeraaeeeas FO6SRF (ZHER2)
Hermitian packed matriX .........ccocouvviiiiiiieeieeeiiiiiiiiiee e FO06SSF (ZHPR2)
matrix copy, rectangular or trapezoidal .............cccccviiiiiiiiiiiniiiiiiiiienn. FO6TFF

solution of a system of equations,
triangular band MatriX ..............oooiiiiiiiiiiiiiii e FO6SKF (ZTBSV)
trIANZUIAT MALIIX .ottt e e e e e e e e e e e e e eeeeaaeeeas FO6SJF (ZTRSV)
triangular packed MatriX.........coevvriiiiiiiiiiiieee e FO6SLF (ZTPSV)

unitary similarity transformation of a Hermitian matrix,
as sequence of plane rotations..............ccceeeiiiiiiiiiiiiiiiiiiiiiaen FO6TMF

real matrix and vector(s),

apply sequence of plane rotations to a rectangular matrix ....................... FO6QXF

compute a norm or the element of largest absolute value,
DANd MAIX coeoiitiiiieiiiii e FO6RBF
ENETAL MALTIX L.vvviiiiiiiiiiiiiiiiieiseeeeeeeeeeeeeeaeaaeeaerreereeeresesssressssssssssssensennes FO6RAF
HesSeNDErg MatriX.......cceeeeeeeiiiiiiiiiicccceeeeeeeee e FO6RMF
matrix INitialiZation ... FO6QHF
symmetric band MAtriX ........cooeeeiiiiiiiiiiieee e e e e FO6REF
SYMIMEITIC MALIIX c.vvvteireeeeressiiiitirreeeeeeeseaaanearrereeeeeeessssssnnnnsrreeeeeeseenans FO6RCF
symmetric matrix, packed form............coooiiiiiiii FO6RDF
symmetric matrix, RFP format............ccccccooiiiiiiiiiiiiiiii, FO6WAF (DLANSF)
symmetric tridiagonal matriX............cceeeeeeeiiiiiiiiiiiiiiiieas FO6RPF
trapezoidal MALLIX.....c..uvviiiiiieeeeeiiiiiiiee e e e e e e e e e e e e e e e eeeaaaeeeeeas FO6RIJF
triangular band MAatriX .........oeeeeriiiiiiiiiiiiiiee e FO6RLF
triangular matrix, packed form..........ccccccoiiiiiiiiiiiii FO6RKF
tridiagonal MAtTIX ...cc.evvvviiiiiiieeee i FO6RNF

compute upper Hessenberg matrix by applying sequence of plane FO6QVF

rotations to an upper triangular MatriX ...........eevvueeeeuneniiiiiiiiaeeeeeeeeeeeaaaaannn

compute upper spiked matrix by applying sequence of plane rotations to FO6QWF

an upper triangular MAatriX........cccvvviiiiiieeeeeeeiiiiiiiiieeeeeeeeeeeeiiereeeeeeeeeens

matrix-vector product,
rectangular band MatriX.......cooeevriiiiiiiiiiiiieiiie e FO6PBF (DGBMYV)
TECtanGUIAT MALTIX......uuvviiiiiieeeeeeeeeiiiiiieeeeeeeeeeeeeiiirareeeeeeeeeeeesneeenaaeeeas FO6PAF (DGEMYV)
symmetric band MAatriX . .......coeeieeiiiiiiiiiiieee e e e e e e FO6PDF (DSBMYV)
SYMIMEITIC MALIIX c.vvvtrieereeeeesiiiiitireeeeeeeeeseaaeineearrreeeaeesseasaannesssrreeeaeaesens FO6PCF (DSYMYV)
Ssymmetric packed MATIX.......c..uvvviiiiiieeeriiiiiiiiiiieee e e e e e eeeiiieeeeeeeeeee e FO6PEF (DSPMV)
triangular band MAatriX ........coooeeiiiiiiiiiiiiiiieee e FO6PGF (DTBMYV)
trIANGUIAT MALTIX ...uiieeeeeeeeeeeceec e e e e e e e e eeaaeeas FO6PFF (DTRMYV)
triangular packed MatriX.........coovvriiiiiiiiiiieiee e FO6PHF (DTPMYV)

orthogonal similarity transformation of a symmetric matrix,
as sequence of plane rotations............eeeieeeereriiiiiiiiiiiiieeeeeee e FO6QMF

permute rows or columns of a matrix,
permutations represented by an inte€ger array ........ccccceeeeeeeeeeeeeeeeeeeennnn. FO6QJF
permutations represented by a real array...........cccoeeeeciiiiiiiiiieeeeeeeinns FO6QKF

QR factorization by sequence of plane rotations,
of rank-1 update of upper triangular matrix........ccccceveereeeeeennneenenennnn. FO6QPF
of upper triangular matrix augmented by a full Tow ..........cccccvvvnnnnnnn. FO6QQF

QR factorization of UZ or R(Q factorization of ZU, where U is upper = FO6QTF

triangular and Z is a sequence of plane rotations..............cccceeeeeeuvvvvenenn..

QR or RQ) factorization by sequence of plane rotations,
of upper Hessenberg matriX .......cccuuvvviiiiieeeeeiiiiiiiiiiiieeeeeeeeeeeiivieeee FO6QRF
of upper spiked MAtriX .......ceeviiiiiiiiiiiiiiiee e FO06QSF

rank-1 update,
TECtaNGUIAT MATTIX..cueeeiiiiiiiieeee et e e e e e e FO6PMF (DGER)
SYMMELIIC MALTIX . ...uvvvvirrrreeeeeeeeeiiiiirieeeeeeeeeseaaaaearrraeeeeeeeesesessssnnsaeeees FO6PPF (DSYR)
Symmetric packed MALTIX.........uuvviriiiieeeeeiiiiiiiiiieeeeeeeeeeeeiiirieeeeeeeee e FO6PQF (DSPR)

rank-2 update,
matrix copy, rectangular or trapezoidal ...........ccccceeviiiiiiiiiiiierieeeeeennnnnn. FO6QFF
3200000113 S (oD 11 T: 13 0 ) PP PP PP SRPTP FO6PRF (DSYR?2)
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symmetric packed MatriX........ccoeeeeeeieeiiiiiiiiiii FO6PSF (DSPR2)
solution of a system of equations,

triangular band MAatriX .........ceeeeeiiiiiiiiiiiiiieee e FO6PKF (DTBSV)

trIANGUIAT MALIIX ..o e e e e e e FO6PJF (DTRSV)

triangular packed MatriX........coevvvviiiiiiiiiiiiiee e FO6PLF (DTPSV)

Level 3 (Matrix-matrix) operations,
complex matrices,
matrix-matrix product,

one mMatrix Hermitian ..........cccoeeeeeeeiiiiiiiiiiiii F06ZCF (ZHEMM)

ONE MALITX SYMIMELTIC . ..eetttieeeriiiiiiiiiiieeeeeeeeeeeeeiiti e e eeeeeeeeseiiibeeeeeeas FO6ZTF (ZSYMM)

ONE MAtriX trIANGUIAT ... .uiiiiiiiiiee e FO6ZFF (ZTRMM)

tWO rectangular MAtrICES. .. .uuiieeeeeeeiiiiiiiieeeeeeeeeeeiiiieeeeeeeeeeeeeeeeraeeeeas FO6ZAF (ZGEMM)
rank-2k update,

of @ Hermitian MatriX.....cooeeeeeiieeeeeeeiieiiiiiiiiiccecceeeeeeeeeeeaees FO06ZRF (ZHER2K)

Of @ SYMMEIIIC MALIIX ..eevrireerriiiiiiiiiiiiiiee e e e e e et e e e e e e e e e FO6ZWF (ZSYR2K)
rank-k update,

of @ Hermitian mMatriX......ccoeeeeeieeeeeeeeeeeeeeeeee e FO06ZPF (ZHERK)

of a Hermitian matrix, RFP format.......................ccccoiiiinn, FO6WQF (ZHFRK)

Of @ SYMMEIIC MALIIX ..eeviireereiiiiiiiiiiiiieeeee e e e ettt e e e e e e e e e eeeeeeeeeas FO06ZUF (ZSYRK)
solution of triangular systems of equations..............ccccevvvvvvvvviveveeeeninnnnnnn. FO6ZJF (ZTRSM)
solution of triangular systems of equations, RFP format.......................... FO6WPF (ZTFSM)

real matrices,
matrix-matrix product,

ONE MALITX SYMIMELTIC . ..ettiieeereeiiiiiiiiiirreeeeeeeeaaaanrrrrareeeeeeeeesssnnnereeeees FO6YCF (DSYMM)

one MatriX triaNGUIAT .........cceiiiiiiiiiiiiiiiiee e e e FO6YFF (DTRMM)

TECtaNGUIAT MAITICES ... .vvveiiiieeeeeiiiiiiiieeeee e e e et e e e e e e FO6YAF (DGEMM)
rank-2k update of a Symmetric Matrix ...........ceeeeveecuvriiiiireeeeeeeeeeeinneeeenn. FO6YRF (DSYR2K)
rank-k update,

Of @ SYMMEIIC MALIIX ..evviiieeriiiiiiiiiiiiiiieeeeeeeeeeiiiieeeeeeeeeeeeeeeeeeeeeeeas FO6YPF (DSYRK)

of a symmetric matrix, RFP format..............ccccooiiiiiiiiiiinniiiee, FO6WCF (DSFRK)
solution of triangular systems of equUations ..........cceeeveeeeerrriiiiiiiiiieeeeeeennn. FO6YJF (DTRSM)
solution of triangular systems of equations, RFP format.......................... FO6WBF (DTFSM)

Sparse level 1 (vector) operations,
complex vector(s),
add scalar times sparse vector to a full vector........cccceevvvviiiiiiiieieenennnn. FO6GTF (ZAXPYI)
dot product of a sparse and a full vector (conjugated)............uvvvveereeennn. FO6GSF (ZDOTCI)
dot product of a sparse and a full vector (unconjugated)............cccccunnnnn. FO6GRF (ZDOTUI)
gather and set t0 ZEro a SPArse VECIOT.........ccecuvvirviiereeeeeeeiiiiiiirireeeeaeeenns FO6GVF (ZGTHRZ)
GAtNET SPAISE VECLOT....euiiiiieeeeeeiiiiiiiiiieeeeeee e e ettt e e eeeeeesaneeebareeeeeeaeeeens FO6GUF (ZGTHR)
SCALLET SPAISE VECLOT ..vvvrrrreeeeeieiiiiiiiieeeeeeeeeeeaaieettreaeeeeeeesssaaannnnsrereeeeaeeeens FO6GWF (ZSCTR)
real vector(s),

add scalar times sparse vector to a full vector........ccccceevvviiiiiiiiieeeeeennnn, FO6ETF (DAXPYI)
apply plane rotation to a sparse and a full vector...........ccoeevvvvvvveeenneennn. FO6EXF (DROTI)
dot product of a sparse and a full Vector..........cccvvveeieeeeiiiiiiiiiiiiieeeeee, FO6ERF (DDOTI)
gather and set t0 ZEro a SPArSe VECIOT.........ccecuuvririirrreeeeeeeiiiiiiiirireeeeaeeenns FO6EVF (DGTHRZ)
GALNET SPAISE VECTOT ... uuuiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereerrrrrerareaeeaeeennnnnnnnns FO6EUF (DGTHR)
SCALET SPATSE VECTOT ... e ee e e e e e e e e e e e eeee e e et e ee et e e et ee et FO6EWF (DSCTR)

BLAS Routines
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Real Matrices Complex Matrices
single precision double precision NAG single precision double precision NAG
ISAMAX IDAMAX FO6JLF (IDAMAX) ICAMAX IZAMAX FO6JMF (IZAMAX)
SASUM DASUM FO6EKF (DASUM) CAXPY ZAXPY FO6GCF (ZAXPY)
SAXPY DAXPY FO6ECF (DAXPY) CAXPYI ZAXPY1 FO6GTF (ZAXPYT)
SAXPYI DAXPYI FO6ETF (DAXPYT) CCoPrPY ZCOPY FO6GFF (ZCOPY)
SCASUM DZASUM FO6JKF (DZASUM) CDOTC ZDOTC FO6GBF (ZDOTC)
SCNRM2 DZNRM2 FO6JJF (DZNRM2) CDOTCI ZDOTCI FO6GSF (ZDOTCI)
SCOPY DCOPY FO6EFF (DCOPY) CDOTU ZDOTU FO6GAF (ZDOTU)
SDOT DDOT FO6EAF (DDOT) CDOTUI ZDOTUI FO6GRF (ZDOTUI)
SDOTI DDOTI FO6ERF (DDOTTI) CGBMV ZGBMV FO06SBF (ZGBMV)
SGBMV DGBMV FO6PBF (DGBMV) CGEMM ZGEMM FO6ZAF (ZGEMM)
SGEMM DGEMM FO6YAF (DGEMM) CGEMV ZGEMV FO6SAF (ZGEMV)
SGEMV DGEMV FO6PAF (DGEMV) CGERC ZGERC FO6SNF (ZGERC)
SGER DGER FO6PMF (DGER) CGERU ZGERU FO6SMF (ZGERU)
SGTHR DGTHR FO6EUF (DGTHR) CGTHR ZGTHR FO6GUF (ZGTHR)
SGTHRZ DGTHRZ FO6EVF (DGTHRZ) CGTHRZ ZGTHRZ FO6GVF (ZGTHRZ)
SNRM2 DNRM2 FO6EJF (DNRM2) CHBMV ZHBMV FO6SDF (ZHBMV)
SROT DROT FO6EPF (DROT) CHEMM ZHEMM FO06ZCF (ZHEMM)
SROTG DROTG FO6AAF (DROTG) CHEMV ZHEMV FO6SCF (ZHEMV)
SROTI DROTI FO6EXF (DROTTI) CHER ZHER FO6SPF (ZHER)
SSBMV DSBMV FO6PDF (DSBMV) CHER2 ZHER2 FO6SRF (ZHER2)
SSCAL DSCAL FO6EDF (DSCAL) CHER2K ZHER2K FO6ZRF (ZHER2K)
SSCTR DSCTR FO6EWF (DSCTR) CHERK ZHERK FO6ZPF (ZHERK)
SSPMV DSPMV FO6PEF (DSPMV) CHPMV ZHPMV FO6SEF (ZHPMV)
SSPR DSPR FO6PQF (DSPR) CHPR ZHPR F06SQF (ZHPR)
SSPR2 DSPR2 FO6PSF (DSPR2) CHPR2 ZHPR2 FO6SSF (ZHPR2)
SSWAP DSWAP FO6EGF (DSWAP) CSCAL ZSCAL FO6GDF (ZSCAL)
SSYMM DSYMM FO6YCF (DSYMM) CSCTR ZSCTR FO6GWF (ZSCTR)
SSYMV DSYMV FO6PCF (DSYMYV) CSSCAL ZDSCAL F06JDF (ZDSCAL)
SSYR DSYR FO6PPF (DSYR) CSWAP ZSWAP FO6GGF (ZSWAP)
SSYR2 DSYR2 FO6PRF (DSYR2) CSYMM ZSYMM FO6ZTF (ZSYMM)
SSYR2K DSYR2K FO6YRF (DSYR2K) CSYR2K ZSYR2K FO6ZWF (ZSYR2K)
SSYRK DSYRK FO6YPF (DSYRK) CSYRK ZSYRK FO6ZUF (ZSYRK)
STBMV DTBMV FO6PGF (DTBMYV) CTBMV ZTBMV FO06SGF (ZTBMV)
STBSV DTBSV FO6PKF (DTBSV) CTBSV ZTBSV FO6SKF (ZTBSV)
STPMV DTPMV FO6PHF (DTPMV) CTPMV ZTPMV FO6SHF (ZTPMV)
STPSV DTPSV FO6PLF (DTPSV) CTPSV ZTPSV FO6SLF (ZTPSV)
STRMM DTRMM FO6YFF (DTRMM) CTRMM ZTRMM FO6ZFF (ZTRMM)
STRMV DTRMV FO6PFF (DTRMV) CTRMV ZTRMV FO6SFF (ZTRMV)
STRSM DTRSM FO6YJF (DTRSM) CTRSM ZTRSM F06ZJF (ZTRSM)
STRSV DTRSV FO6PJF (DTRSV) CTRSV ZTRSV FO6SJF (ZTRSV)
SLANSF DLANSF FO6WAF (DLANSF) CLANHF ZLANHF FO6 WNF
STFSM DTFSM FO6WBF (DTFSM) (ZLANHF)
SSFRK DSFRK FO6WCF (DSFRK) CHFRK ZHFRK FO6WQF (ZHFRK)
CTFSM ZTFSM FO6WPF (ZTFSM)
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5  Auxiliary Routines Associated with Library Routine Parameters

None.

6 Routines Withdrawn or Scheduled for Withdrawal

None.
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