
NAG Library Routine Document

F02SDF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F02SDF finds the eigenvector corresponding to a given real eigenvalue for the generalized problem
Ax ¼ �Bx, or for the standard problem Ax ¼ �x, where A and B are real band matrices.

2 Specification

SUBROUTINE F02SDF (N, MA1, MB1, A, LDA, B, LDB, SYM, RELEP, RMU, VEC, D,
IWORK, WORK, LWORK, IFAIL)

&

INTEGER N, MA1, MB1, LDA, LDB, IWORK(N), LWORK, IFAIL
REAL (KIND=nag_wp) A(LDA,N), B(LDB,N), RELEP, RMU, VEC(N), D(30),

WORK(LWORK)
&

LOGICAL SYM

3 Description

Given an approximation � to a real eigenvalue � of the generalized eigenproblem Ax ¼ �Bx, F02SDF
attempts to compute the corresponding eigenvector by inverse iteration.

F02SDF first computes lower and upper triangular factors, L and U , of A� �B, using Gaussian

elimination with interchanges, and then solves the equation Ux ¼ e, where e ¼ 1; 1; 1; . . . ; 1ð ÞT – this is
the first half iteration.

There are then three possible courses of action depending on the input value of Dð1Þ.
1. Dð1Þ ¼ 0.

This setting should be used if � is an ill-conditioned eigenvalue (provided the matrix elements do
not vary widely in order of magnitude). In this case it is essential to accept only a vector found after
one half iteration, and � must be a very good approximation to �. If acceptable growth is achieved
in the solution of Ux ¼ e, then the normalized x is accepted as the eigenvector. If not, columns of
an orthogonal matrix are tried in turn in place of e. If none of these give acceptable growth, the
routine fails, indicating that � was not a sufficiently good approximation to �.

2. Dð1Þ > 0.

This setting should be used if � is moderately close to an eigenvalue which is not ill-conditioned
(provided the matrix elements do not differ widely in order of magnitude). If acceptable growth is
achieved in the solution of Ux ¼ e, the normalized x is accepted as the eigenvector. If not, inverse
iteration is performed. Up to 30 iterations are allowed to achieve a vector and a correction to �
which together give acceptably small residuals.

3. Dð1Þ < 0.

This setting should be used if the elements of A and B vary widely in order of magnitude. Inverse
iteration is performed, but a different convergence criterion is used.

See Section 9.3 for further details.

Note that the bandwidth of the matrix A must not be less than the bandwidth of B. If this is not so,
either A must be filled out with zeros, or matrices A and B may be reversed and 1=� supplied as an
approximation to the eigenvalue 1=�. Also it is assumed that A and B each have the same number of
subdiagonals as superdiagonals. If this is not so, they must be filled out with zeros. If A and B are both
symmetric, only the upper triangles need be supplied.
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5 Parameters

1: N – INTEGER Input

On entry: n, the order of the matrices A and B.

Constraint: N � 1.

2: MA1 – INTEGER Input

On entry: the value mA þ 1, where mA is the number of nonzero lines on each side of the
diagonal of A. Thus the total bandwidth of A is 2mA þ 1.

Constraint: 1 � MA1 � N.

3: MB1 – INTEGER Input

On entry: if MB1 � 0, B is assumed to be the unit matrix. Otherwise MB1 must specify the value
mB þ 1, where mB is the number of nonzero lines on each side of the diagonal of B. Thus the
total bandwidth of B is 2mB þ 1.

Constraint: MB1 � MA1.

4: AðLDA;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the n by n band matrix A. The mA subdiagonals must be stored in the first mA rows of
the array; the diagonal in the (mA þ 1)th row; and the mA superdiagonals in rows mA þ 2 to
2mA þ 1. Each row of the matrix must be stored in the corresponding column of the array. For
example, if n ¼ 6 and mA ¼ 2 the storage scheme is:

� � a31 a42 a53 a64

� a21 a32 a43 a54 a65

a11 a22 a33 a44 a55 a66

a12 a23 a34 a45 a56 �
a13 a24 a35 a46 � �

:

Elements of the array marked � need not be set. The following code assigns the matrix elements
within the band to the correct elements of the array:

DO 20 J = 1, N
DO 10 I = MAX(1,J-MA1+1), MIN(N,J+MA1-1)
A(I-J+MA1,J) = matrix(J,I)
10 CONTINUE
20 CONTINUE

If SYM ¼ :TRUE: (i.e., both A and B are symmetric), only the lower triangle of A need be stored
in the first MA1 rows of the array.

On exit: details of the factorization of A� ��B, where �� is an estimate of the eigenvalue.
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5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F02SDF
is called.

Constraint: LDA � 2�MA1� 1.

6: BðLDB;NÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if MB1 > 0, B must contain the n by n band matrix B, stored in the same way as A. If
SYM ¼ :TRUE:, only the lower triangle of B need be stored in the first MB1 rows of the array.

If MB1 � 0, the array is not used.

On exit: elements in the top-left corner, and in the bottom right corner if SYM ¼ :FALSE:, are set
to zero; otherwise the array is unchanged.

7: LDB – INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F02SDF
is called.

Constraints:

if SYM ¼ :FALSE:, LDB � 2�MB1� 1;
if SYM ¼ :TRUE:, LDB � MB1.

8: SYM – LOGICAL Input

On entry: if SYM ¼ :TRUE:, both A and B are assumed to be symmetric and only their upper
triangles need be stored. Otherwise SYM must be set to .FALSE..

9: RELEP – REAL (KIND=nag_wp) Input

On entry: the relative error of the coefficients of the given matrices A and B. If the value of
RELEP is less than the machine precision, the machine precision is used instead.

10: RMU – REAL (KIND=nag_wp) Input

On entry: �, an approximation to the eigenvalue for which the corresponding eigenvector is
required.

11: VECðNÞ – REAL (KIND=nag_wp) array Output

On exit: the eigenvector, normalized so that the largest element is unity, corresponding to the
improved eigenvalue RMUþ Dð30Þ.

12: Dð30Þ – REAL (KIND=nag_wp) array Input/Output

On entry: Dð1Þ must be set to indicate the type of problem (see Section 3):

Dð1Þ > 0:0
Indicates a well-conditioned eigenvalue.

Dð1Þ ¼ 0:0
Indicates an ill-conditioned eigenvalue.

Dð1Þ < 0:0
Indicates that the matrices have elements varying widely in order of magnitude.

On exit: if Dð1Þ 6¼ 0:0 on entry, the successive corrections to � are given in DðiÞ, for
i ¼ 1; 2; . . . ; k, where kþ 1 is the total number of iterations performed. The final correction is also
given in the last position, Dð30Þ, of the array. The remaining elements of D are set to zero.

If Dð1Þ ¼ 0:0 on entry, no corrections to � are computed and DðiÞ is set to 0:0, for
i ¼ 1; 2; . . . ; 30. Thus in all three cases the best available approximation to the eigenvalue is
RMUþ Dð30Þ.
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13: IWORKðNÞ – INTEGER array Workspace
14: WORKðLWORKÞ – REAL (KIND=nag_wp) array Workspace
15: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F02SDF
is called.

Constraints:

if Dð1Þ 6¼ 0:0, LWORK � N� MA1þ 1ð Þ;
if Dð1Þ ¼ 0:0, LWORK � 2� N.

16: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or MA1 < 1,
or MA1 > N,
or LDA < 2�MA1� 1,
or LDB < MB1 when SYM ¼ :TRUE:,
or LDB < 2�MB1� 1 when SYM ¼ :FALSE: (LDB is not checked if MB1 � 0).

IFAIL ¼ 2

On entry, MA1 < MB1. Either fill out A with zeros, or reverse the roles of A and B, and replace
RMU by its reciprocal, i.e., solve Bx ¼ ��1Ax:

IFAIL ¼ 3

On entry, LWORK < 2� N when Dð1Þ ¼ 0:0,
or LWORK < N� MA1þ 1ð Þ when Dð1Þ 6¼ 0:0.

IFAIL ¼ 4

A is null. If B is nonsingular, all the eigenvalues are zero and any set of N orthogonal vectors
forms the eigensolution.

IFAIL ¼ 5

B is null. If A is nonsingular, all the eigenvalues are infinite, and the columns of the unit matrix
are eigenvectors.

IFAIL ¼ 6

On entry, A and B are both null. The eigensolution is arbitrary.
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IFAIL ¼ 7

Dð1Þ 6¼ 0:0 on entry and convergence is not achieved in 30 iterations. Either the eigenvalue is ill-
conditioned or RMU is a poor approximation to the eigenvalue. See Section 9.3.

IFAIL ¼ 8

Dð1Þ ¼ 0:0 on entry and no eigenvector has been found after min N; 5ð Þ back-substitutions. RMU
is not a sufficiently good approximation to the eigenvalue.

IFAIL ¼ 9

Dð1Þ < 0:0 on entry and RMU is too inaccurate for the solution to converge.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

The eigensolution is exact for some problem

Aþ Eð Þx ¼ � Bþ Fð Þx;

where Ek k; Fk k are of the order of � Ak k þ � Bk kð Þ, where � is the value used for RELEP.

8 Parallelism and Performance

Not applicable.

9 Further Comments

9.1 Timing

The time taken by F02SDF is approximately proportional to n 2mA þ 1ð Þ2 for factorization, and to
n 2mA þ 1ð Þ for each iteration.

9.2 Storage

The storage of the matrices A and B is designed for efficiency on a paged machine.

F02SDF will work with full matrices but it will do so inefficiently, particularly in respect of storage
requirements.

9.3 Algorithmic Details

Inverse iteration is performed according to the rule

A� �Bð Þyrþ1 ¼ Bxr

F02 – Eigenvalues and Eigenvectors F02SDF

Mark 25 F02SDF.5



xrþ1 ¼
1

�rþ1
yrþ1

where �rþ1 is the element of yrþ1 of largest magnitude.

Thus:

A� �Bð Þxrþ1 ¼
1

�rþ1
Bxr:

Hence the residual corresponding to xrþ1 is very small if �rþ1j j is very large (see Peters and Wilkinson
(1979)). The first half iteration, Uy1 ¼ e, corresponds to taking L�1PBx0 ¼ e.
If � is a very accurate eigenvalue, then there should always be an initial vector x0 such that one half
iteration gives a small residual and thus a good eigenvector. If the eigenvalue is ill-conditioned, then
second and subsequent iterated vectors may not be even remotely close to an eigenvector of a
neighbouring problem (see pages 374–376 of Wilkinson (1972) and Wilkinson (1974)). In this case it is
essential to accept only a vector obtained after one half iteration.

However, for well-conditioned eigenvalues, there is no loss in performing more than one iteration (see
page 376 of Wilkinson (1972)), and indeed it will be necessary to iterate if � is not such a good
approximation to the eigenvalue. When the iteration has converged, yrþ1 will be some multiple of xr,
yrþ1 ¼ �rþ1xr, say.

Therefore

A� �Bð Þ�rþ1xr ¼ Bxr;

giving

A� �þ 1

�rþ1

� �
B

� �
xr ¼ 0:

Thus �þ 1

�rþ1
is a better approximation to the eigenvalue. �rþ1 is obtained as the element of yrþ1 which

corresponds to the element of largest magnitude, þ1, in xr. The routine terminates when

A� �þ 1

�r

� �
B

� �
xr

����
���� is of the order of the machine precision relative to Ak k þ �j j Bk k.

If the elements of A and B vary widely in order of magnitude, then Ak k and Bk k are excessively large
and a different convergence test is required. The routine terminates when the difference between
successive corrections to � is small relative to �.

In practice one does not necessarily know if the given problem is well-conditioned or ill-conditioned. In
order to provide some information on the condition of the eigenvalue or the accuracy of � in the event of

failure, successive values of
1

�r
are stored in the vector D when Dð1Þ is nonzero on input. If these values

appear to be converging steadily, then it is likely that � was a poor approximation to the eigenvalue and
it is worth trying again with RMUþ Dð30Þ as the initial approximation. If the values in D vary
considerably in magnitude, then the eigenvalue is ill-conditioned.

A discussion of the significance of the singularity of A and/or B is given in relation to the QZ algorithm
in Wilkinson (1979).

F02SDF NAG Library Manual

F02SDF.6 Mark 25



10 Example

Given the generalized eigenproblem Ax ¼ �Bx where

A ¼

1 1 2
�1 2 1 2

�1 3 1 2
�1 4 1

�1 5

0
BBB@

1
CCCA and B ¼

5 1
1 4 2

2 3 2
2 2 1

1 1

0
BBB@

1
CCCA

find the eigenvector corresponding to the approximate eigenvalue �12:33.

Although B is symmetric, A is not, so SYM must be set to .FALSE. and all the elements of B in the
band must be supplied to the routine. A (as written above) has 1 subdiagonal and 2 superdiagonals, so
MA1 must be set to 3 and A filled out with an additional subdiagonal of zeros. Each row of the matrices
is read in as data in turn.

10.1 Program Text

Program f02sdfe

! F02SDF Example Program Text

! Mark 25 Release. NAG Copyright 2014.

! .. Use Statements ..
Use nag_library, Only: f02sdf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: relep, rmu
Integer :: i, ifail, j, k, k1, k2, lda, ldb, &

lwork, ma, mb, n
Logical :: sym

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), vec(:), work(:)
Real (Kind=nag_wp) :: d(30)
Integer, Allocatable :: iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: min

! .. Executable Statements ..
Write (nout,*) ’F02SDF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) n, ma, mb
lda = 2*ma + 1
ldb = 2*mb + 1
lwork = n*(ma+2)
Allocate (a(lda,n),b(ldb,n),vec(n),work(lwork),iwork(n))
Do i = 1, n

k1 = ma + 1 - min(ma,i-1)
k2 = ma + 1 + min(ma,n-i)
Read (nin,*)(a(k,i),k=k1,k2)

End Do
Do i = 1, n

k1 = mb + 1 - min(mb,i-1)
k2 = mb + 1 + min(mb,n-i)
Read (nin,*)(b(k,i),k=k1,k2)

End Do
Read (nin,*) rmu, d(1)
sym = .False.
relep = 0.0E0_nag_wp

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 1
Call f02sdf(n,ma+1,mb+1,a,lda,b,ldb,sym,relep,rmu,vec,d,iwork,work, &
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lwork,ifail)

Write (nout,*)
If (ifail==0) Then

Write (nout,99999) ’Corrected eigenvalue = ’, rmu + d(30)
Write (nout,*)
Write (nout,*) ’Eigenvector is’
Write (nout,99998) vec(1:n)

Else If (ifail>0) Then
Write (nout,99997) ’Error in F02SDF. IFAIL =’, ifail
If (ifail==7 .Or. ifail==9) Then

Write (nout,*)
Write (nout,*) ’Successive corrections to RMU were’
Write (nout,*)
Do j = 1, 29

If (d(j)==0.0E0_nag_wp) Go To 100
Write (nout,99996) d(j)

End Do
End If

Else
Write (nout,99995) ifail

End If
100 Continue

99999 Format (1X,A,F8.4)
99998 Format (1X,5F9.4)
99997 Format (1X,A,I5)
99996 Format (1X,E20.4)
99995 Format (1X,’ ** F02SDF returned with IFAIL = ’,I5)

End Program f02sdfe

10.2 Program Data

F02SDF Example Program Data
5 2 1 : n, ma, mb
1.0 1.0 2.0

-1.0 2.0 1.0 2.0
0.0 -1.0 3.0 1.0 2.0
0.0 -1.0 4.0 1.0
0.0 -1.0 5.0 : matrix A
5.0 1.0
1.0 4.0 2.0
2.0 3.0 2.0
2.0 2.0 1.0
1.0 1.0 : matrix B

-12.33 1.0 : rmu, d(1)

10.3 Program Results

F02SDF Example Program Results

Corrected eigenvalue = -12.3394

Eigenvector is
-0.0572 0.3951 -0.8427 1.0000 -0.6540
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