NAG Library Routine Document
 F01JHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F01JHF computes the Fréchet derivative $L(A, E)$ of the matrix exponential of a real n by n matrix A applied to the real n by n matrix E. The matrix exponential e^{A} is also returned.

2 Specification

```
SUBROUTINE FOIJHF (N, A, LDA, E, LDE, IFAIL)
INTEGER N, LDA, LDE, IFAIL
REAL (KIND=nag_wp) A(LDA,*), E(LDE,*)
```


3 Description

The Fréchet derivative of the matrix exponential of A is the unique linear mapping $E \mapsto L(A, E)$ such that for any matrix E

$$
e^{A+E}-e^{A}-L(A, E)=o(\|E\|)
$$

The derivative describes the first-order effect of perturbations in A on the exponential e^{A}.
F01JHF uses the algorithms of Al-Mohy and Higham (2009a) and Al-Mohy and Higham (2009b) to compute e^{A} and $L(A, E)$. The matrix exponential e^{A} is computed using a Padé approximant and the scaling and squaring method. The Padé approximant is then differentiated in order to obtain the Fréchet derivative $L(A, E)$.

4 References

Al-Mohy A H and Higham N J (2009a) A new scaling and squaring algorithm for the matrix exponential SIAM J. Matrix Anal. 31(3) 970-989
Al-Mohy A H and Higham N J (2009b) Computing the Fréchet derivative of the matrix exponential, with an application to condition number estimation SIAM J. Matrix Anal. Appl. 30(4) 1639-1657

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA
Moler C B and Van Loan C F (2003) Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later SIAM Rev. 45 3-49

5 Parameters

1: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the order of the matrix A.
Constraint: $\mathrm{N} \geq 0$.
2: $\mathrm{A}(\mathrm{LDA}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Input/Output
Note: the second dimension of the array A must be at least N .
On entry: the n by n matrix A.
On exit: the n by n matrix exponential e^{A}.

3: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F01JHF is called.

Constraint: LDA $\geq \mathrm{N}$.
4: $\mathrm{E}(\mathrm{LDE}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
Note: the second dimension of the array E must be at least N .
On entry: the n by n matrix E
On exit: the Fréchet derivative $L(A, E)$
5: LDE - INTEGER
Input
On entry: the first dimension of the array E as declared in the (sub)program from which F01JHF is called.
Constraint: $\mathrm{LDE} \geq \mathrm{N}$.
6: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
IFAIL $=1$
The linear equations to be solved for the Pade approximant are singular; it is likely that this routine has been called incorrectly.

IFAIL $=2$
e^{A} has been computed using an IEEE double precision Padé approximant, although the arithmetic precision is higher than IEEE double precision.

IFAIL $=3$
An unexpected internal error has occurred. Please contact NAG.
IFAIL $=-1$
On entry, $\mathrm{N}=\langle$ value \rangle.
Constraint: $\mathrm{N} \geq 0$.
IFAIL $=-3$
On entry, LDA $=\langle$ value \rangle and $\mathrm{N}=\langle$ value \rangle.
Constraint: LDA $\geq \mathrm{N}$.

IFAIL $=-5$

On entry, $\mathrm{LDE}=\langle$ value \rangle and $\mathrm{N}=\langle$ value \rangle.
Constraint: $\mathrm{LDE} \geq \mathrm{N}$.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

$7 \quad$ Accuracy

For a normal matrix A (for which $A^{\mathrm{T}} A=A A^{\mathrm{T}}$) the computed matrix, e^{A}, is guaranteed to be close to the exact matrix, that is, the method is forward stable. No such guarantee can be given for non-normal matrices. See Section 10.3 of Higham (2008), Al-Mohy and Higham (2009a) and Al-Mohy and Higham (2009b) for details and further discussion.

8 Parallelism and Performance

F01JHF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

F01JHF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The cost of the algorithm is $O\left(n^{3}\right)$ and the real allocatable memory required is approximately $9 n^{2}$; see Al-Mohy and Higham (2009a) and Al-Mohy and Higham (2009b).

If the matrix exponential alone is required, without the Fréchet derivative, then F01ECF should be used. If the condition number of the matrix exponential is required then F01JGF should be used.
As well as the excellent book Higham (2008), the classic reference for the computation of the matrix exponential is Moler and Van Loan (2003).

10 Example

This example finds the matrix exponential e^{A} and the Fréchet derivative $L(A, E)$, where

$$
A=\left(\begin{array}{llll}
1 & 2 & 2 & 2 \\
3 & 1 & 1 & 2 \\
3 & 2 & 1 & 2 \\
3 & 3 & 3 & 1
\end{array}\right) \quad \text { and } \quad E=\left(\begin{array}{llll}
1 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 \\
4 & 2 & 1 & 2 \\
0 & 3 & 2 & 1
\end{array}\right)
$$

10.1 Program Text

```
    Program f01jhfe
! FO1JHF Example Program Text
! Mark 25 Release. NAG Copyright 2014.
! .. Use Statements ..
    Use nag_library, Only: f01jhf, nag_wp, x04caf
! .. Implicit None Statement ..
    Implicit None
! .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
    Integer :: i, ifail, lda, lde, n
! .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: a(:,:), e(:,:)
! .. Executable Statements ..
    Write (nout,*) 'FO1JHF Example Program Results'
    Write (nout,*)
    Flush (nout)
! Skip heading in data file
    Read (nin,*)
    Read (nin,*) n
    lda = n
    lde = n
    Allocate (a(lda,n))
    Allocate (e(lde,n))
    Read A from data file
    Read (nin,*)(a(i,1:n),i=1,n)
    Read E from data file
    Read (nin,*)(e(i,1:n),i=1,n)
    ifail: behaviour on error exit
                =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
    ifail = 0
! Find exp( A ) and L_exp(A,E)
    Call f01jhf(n,a,lda,e,lde,ifail)
! Print solution
    Call x04caf('General',' ',n,n,a,lda,'Exp(A)',ifail)
    Write (nout,*)
    Call x04caf('General',' ',n,n,e,lde,'L_exp(A,E)',ifail)
```

End Program f01jhfe

10.2 Program Data

```
FO1JHF Example Program Data
```

4
$1.0 \quad 2.0 \quad 2.0 \quad 2.0$
$3.0 \quad 1.0 \quad 1.0 \quad 2.0$
$\begin{array}{llll}3.0 & 2.0 & 1.0 & 2.0\end{array}$
$3.0 \quad 3.0 \quad 3.0 \quad 1.0$:End of matrix A
$1.0 \quad 0.0 \quad 1.0 \quad 2.0$
$\begin{array}{llll}0.0 & 0.0 & 0.0 & 1.0\end{array}$
$4.0 \quad 2.0 \quad 1.0 \quad 2.0$
$0.0 \quad 3.0 \quad 2.0 \quad 1.0$:End of matrix E

10.3 Program Results

FO1JHF Example Program Results
$\operatorname{Exp}(\mathrm{A})$

	1	2	3	4
1	740.7038	610.8500	542.2743	549.1753
2	731.2510	603.5524	535.0884	542.2743
3	823.7630	679.4257	603.5524	610.8500
4	998.4355	823.7630	731.2510	740.7038
L_exp (A,E)	1	2	3	4
		3571.5724	2989.2581	2652.3449
	3818.7416			
2	3202.0590	2684.2631	2381.4500	2542.7976
3	4341.3950	3628.9329	3219.3516	3408.1831
4	4821.2945	4035.9700	3580.0124	3804.4690

