NAG Library Routine Document
 F01HBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F01HBF computes the action of the matrix exponential $e^{t A}$, on the matrix B, where A is a complex n by n matrix, B is a complex n by m matrix and t is a complex scalar. It uses reverse communication for evaluating matrix products, so that the matrix A is not accessed explicitly.

2 Specification

```
SUBROUTINE FO1HBF (IREVCM, N, M, B, LDB, T, TR, B2, LDB2, X, LDX, Y,
    LDY, P, R, Z, CCOMM, COMM, ICOMM, IFAIL)
INTEGER IREVCM, N, M, LDB, LDB2, LDX, LDY, ICOMM(2*N+40), &
REAL (KIND=nag_wp) COMM ( 3*N+14)
COMPLEX (KIND=nag_wp) B (LDB,*), T, TR, B2 (LDB2,*), X(LDX,*), Y(LDY,*),
    P(N), R(N), Z(N), CCOMM(N* (M+2))
```


3 Description

$e^{t A} B$ is computed using the algorithm described in Al-Mohy and Higham (2011) which uses a truncated Taylor series to compute the $e^{t A} B$ without explicitly forming $e^{t A}$.
The algorithm does not explicity need to access the elements of A; it only requires the result of matrix multiplications of the form $A X$ or $A^{\mathrm{H}} Y$. A reverse communication interface is used, in which control is returned to the calling program whenever a matrix product is required.

4 References

Al-Mohy A H and Higham N J (2011) Computing the action of the matrix exponential, with an application to exponential integrators SIAM J. Sci. Statist. Comput. 33(2) 488-511
Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Parameters

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and re-entries, and a final exit, as indicated by the parameter IREVCM. Between intermediate exits and reentries, all parameters other than $B 2, X, Y, P$ and R must remain unchanged.

1: IREVCM - INTEGER Input/Output

On initial entry: must be set to 0 .
On intermediate exit: $\operatorname{IREVCM}=1,2,3,4$ or 5 . The calling program must:
(a) if IREVCM $=1$: evaluate $B_{2}=A B$, where B_{2} is an n by m matrix, and store the result in B2;
if $\operatorname{IREVCM}=2$: evaluate $Y=A X$, where X and Y are n by 2 matrices, and store the result in Y ;
if IREVCM $=3$: evaluate $X=A^{\mathrm{H}} Y$ and store the result in X ;
if IREVCM $=4$: evaluate $p=A z$ and store the result in P ;
if $\operatorname{IREVCM}=5$: evaluate $r=A^{\mathrm{H}} z$ and store the result in R.
(b) call F 01 HBF again with all other parameters unchanged.

On final exit: $\mathrm{IREVCM}=0$.
2: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the order of the matrix A.
Constraint: $\mathrm{N} \geq 0$.
3: M - INTEGER
Input
On entry: the number of columns of the matrix B.
Constraint: $\mathrm{M} \geq 0$.
4: $\mathrm{B}(\mathrm{LDB}, *)-$ COMPLEX (KIND=nag_wp) array Input/Output
Note: the second dimension of the array B must be at least M.
On initial entry: the n by m matrix B.
On intermediate exit: if IREVCM $=1$, contains the n by m matrix B.
On intermediate re-entry: must not be changed.
On final exit: the n by m matrix $e^{t A} B$.

5: LDB - INTEGER
Input
On entry: the first dimension of the array B as declared in the (sub)program from which F01HBF is called.
Constraint: $\mathrm{LDB} \geq \mathrm{N}$.
6: \quad T - COMPLEX (KIND=nag_wp)
Input
On entry: the scalar t.
7: \quad TR - COMPLEX (KIND=nag_wp)
Input
On entry: the trace of A. If this is not available then any number can be supplied (0 is a reasonable default); however, in the trivial case, $n=1$, the result $e^{\mathrm{TR} t} B$ is immediately returned in the first row of B. See Section 9 .

8: $\quad \mathrm{B} 2(\mathrm{LDB} 2, *)-\mathrm{COMPLEX}(\mathrm{KIND}=$ nag_wp) array
Input/Output
Note: the second dimension of the array B2 must be at least M.
On initial entry: need not be set.
On intermediate re-entry: if $\operatorname{IREVCM}=1$, must contain $A B$.
On final exit: the array is undefined.
9: LDB2 - INTEGER
Input
On initial entry: the first dimension of the array B2 as declared in the (sub)program from which F 01 HBF is called.

Constraint: $\mathrm{LDB} 2 \geq \mathrm{N}$.
10: $\quad \mathrm{X}(\mathrm{LDX}, *)$ - COMPLEX (KIND=nag_wp) array
Input/Output
Note: the second dimension of the array X must be at least 2 .
On initial entry: need not be set.
On intermediate exit: if $\operatorname{IREVCM}=2$, contains the current n by 2 matrix X.
On intermediate re-entry: if IREVCM $=3$, must contain $A^{\mathrm{H}} Y$.

On final exit: the array is undefined.
11: LDX - INTEGER
Input
On entry: the first dimension of the array X as declared in the (sub)program from which F01HBF is called.

Constraint: $\mathrm{LDX} \geq \mathrm{N}$.
12: $\mathrm{Y}(\mathrm{LDY}, *)-\mathrm{COMPLEX}(\mathrm{KIND}=$ nag_wp) array
Input/Output
Note: the second dimension of the array Y must be at least 2 .
On initial entry: need not be set.
On intermediate exit: if $\operatorname{IREVCM}=3$, contains the current n by 2 matrix Y.
On intermediate re-entry: if IREVCM $=2$, must contain $A X$.
On final exit: the array is undefined.
13: LDY - INTEGER
Input
On entry: the first dimension of the array Y as declared in the (sub)program from which F01HBF is called.

Constraint: LDY $\geq \mathrm{N}$.
14: $\mathrm{P}(\mathrm{N})$ - COMPLEX (KIND=nag_wp) array
Input/Output
On initial entry: need not be set.
On intermediate re-entry: if IREVCM $=4$, must contain $A z$.
On final exit: the array is undefined.
15: $\quad \mathrm{R}(\mathrm{N})$ - COMPLEX (KIND=nag_wp) array
Input/Output
On initial entry: need not be set.
On intermediate re-entry: if IREVCM $=5$, must contain $A^{\mathrm{H}} z$.
On final exit: the array is undefined.
16: $\quad \mathrm{Z}(\mathrm{N})$ - COMPLEX (KIND=nag_wp) array
Input/Output
On initial entry: need not be set.
On intermediate exit: if IREVCM $=4$ or 5 , contains the vector z.
On intermediate re-entry: must not be changed.
On final exit: the array is undefined.
17: $\quad \operatorname{CCOMM}(\mathrm{N} \times(\mathrm{M}+2))-\mathrm{COMPLEX}(\mathrm{KIND}=$ nag_wp $)$ array
Communication Array
$\operatorname{COMM}(3 \times \mathrm{N}+14)-$ REAL $(\mathrm{KIND}=$ nag_wp $)$ array Communication Array
$\operatorname{ICOMM}(2 \times \mathrm{N}+40)$ - INTEGER array Communication Array
IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=2$
$e^{t A} B$ has been computed using an IEEE double precision Taylor series, although the arithmetic precision is higher than IEEE double precision.

IFAIL $=-1$
On initial entry, IREVCM $=\langle$ value \rangle.
Constraint: $\operatorname{IREVCM}=0$.
On intermediate re-entry, $\operatorname{IREVCM}=\langle$ value \rangle.
Constraint: $\operatorname{IREVCM}=1,2,3,4$ or 5 .
IFAIL $=-2$
On initial entry, $\mathrm{N}=\langle$ value \rangle.
Constraint: $\mathrm{N} \geq 0$.
IFAIL $=-3$
On initial entry, $\mathrm{M}=\langle$ value \rangle.
Constraint: $\mathrm{M} \geq 0$.
IFAIL $=-5$
On initial entry, $\mathrm{LDB}=\langle$ value \rangle and $\mathrm{N}=\langle$ value \rangle.
Constraint: $\mathrm{LDB} \geq \mathrm{N}$.

IFAIL $=-9$
On initial entry, LDB2 $=\langle$ value \rangle and $\mathrm{N}=\langle$ value \rangle.
Constraint: LDB2 $\geq \mathrm{N}$.
IFAIL $=-11$
On initial entry, $\mathrm{LDX}=\langle$ value \rangle and $\mathrm{N}=\langle$ value \rangle.
Constraint: $\mathrm{LDX} \geq \mathrm{N}$.
IFAIL $=-13$
On initial entry, $\mathrm{LDY}=\langle$ value \rangle and $\mathrm{N}=\langle$ value \rangle.
Constraint: LDY $\geq \mathrm{N}$.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.

IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

For an Hermitian matrix A (for which $A^{\mathrm{H}}=A$) the computed matrix $e^{t A} B$ is guaranteed to be close to the exact matrix, that is, the method is forward stable. No such guarantee can be given for non-Hermitian matrices. See Section 4 of Al-Mohy and Higham (2011) for details and further discussion.

8 Parallelism and Performance

F01HBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

9.1 Use of $\boldsymbol{\operatorname { T r }}(\boldsymbol{A})$

The elements of A are not explicitly required by F01HBF. However, the trace of A is used in the preprocessing phase of the algorithm. If $\operatorname{Tr}(A)$ is not available to the calling subroutine then any number can be supplied (0 is recommended). This will not affect the stability of the algorithm, but it may reduce its efficiency.

9.2 When to use F01HBF

F01HBF is designed to be used when A is large and sparse. Whenever a matrix multiplication is required, the routine will return control to the calling program so that the multiplication can be done in the most efficient way possible. Note that $e^{t A} B$ will not, in general, be sparse even if A is sparse.
If A is small and dense then F 01 HAF can be used to compute $e^{t A} B$ without the use of a reverse communication interface.
The real analog of F01HBF is F01GBF.

9.3 Use in Conjunction with NAG Library Routines

To compute $e^{t A} B$, the following skeleton code can normally be used:

```
revcm: Do
    Call F01HBF(IREVCM,N,M,B,LDB,T,TR,B2,LDB2,X,LDX,Y,LDX,P,R,Z, &
                CCOMM, COMM, ICOMM,IFAIL)
    If (IREVCM == O) Then
        Exit revcm
    Else If (IREVCM == 1) Then
        .. Code to compute B2=AB ..
    Else If (IREVCM == 2) Then
        .. Code to compute Y=AX ..
    Else If (IREVCM == 3) Then
        .. Code to compute X=A^H Y ..
    Else If (IREVCM == 4) Then
        .. Code to compute P=AZ ..
    Else If (IREVCM == 5) Then
```

```
        .. Code to compute R=A^H Z ..
    End If
End Do revcm
```

The code used to compute the matrix products will vary depending on the way A is stored. If all the elements of A are stored explicitly, then F06ZAF (ZGEMM) can be used. If A is triangular then F06ZFF (ZTRMM) should be used. If A is Hermitian, then F06ZCF (ZHEMM) should be used. If A is symmetric, then F06ZTF (ZSYMM) should be used. For sparse A stored in coordinate storage format F11XNF and F11XSF can be used. For sparse A stored in compressed column storage format (CCS) the program text of Section 10 contains the routine matmul to perform matrix products.

10 Example

This example computes $e^{t A} B$ where

$$
\begin{gathered}
A=\left(\begin{array}{rrrr}
0.7+0.8 i & -0.2+0.0 i & 1.0+0.0 i & 0.6+0.5 i \\
0.3+0.7 i & 0.7+0.0 i & 0.9+3.0 i & 1.0+0.8 i \\
0.3+3.0 i & -0.7+0.0 i & 0.2+0.6 i & 0.7+0.5 i \\
0.0+0.9 i & 4.0+0.0 i & 0.0+0.0 i & 0.2+0.0 i
\end{array}\right), \\
B=\left(\begin{array}{rr}
0.1+0.0 i & 1.2+0.1 i \\
1.3+0.9 i & -0.2+2.0 i \\
4.0+0.6 i & -1.0+0.8 i \\
0.4+0.0 i & -0.9+0.0 i
\end{array}\right)
\end{gathered}
$$

and

$$
t=1.1+0.0 i
$$

A is stored in compressed column storage format (CCS) and matrix multiplications are performed using the routine matmul.

10.1 Program Text

```
    Program f01hbfe
    F01HBF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Use Statements ..
    Use nag_library, Only: f01hbf, nag_wp, x04daf, zgemm
    .. Implicit None Statement ..
    Implicit None
! .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
    Complex (Kind=nag_wp) :: t, tr
    Integer :: i, ifail, irevcm, lda, ldb, ldb2, &
        ldx, ldy, m, n
! .. Local Arrays ..
    Complex (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), b2(:,:), ccomm(:), &
                                    p(:), r(:), x(:,:), y(:,:), z(:)
    Real (Kind=nag_wp), Allocatable :: comm(:)
    Integer, Allocatable :: icomm(:)
    .. Executable Statements ..
    Write (nout,*) 'FO1HBF Example Program Results'
    Write (nout,*)
    Flush (nout)
    Skip heading in data file
    Read (nin,*)
    Read (nin,*) n, m, t
    lda = n
```

```
    ldb = n
    ldb2 = n
    ldx = n
    ldy = n
! Allocate required space
    Allocate (a(lda,n))
    Allocate (b(ldb,m))
    Allocate (b2(ldb2,m))
    Allocate (ccomm(n*(m+2)))
    Allocate (x(ldx,2))
    Allocate (y(ldy,2))
    Allocate (icomm(2*n+40))
    Allocate (comm(14+3*n))
    Allocate (p(n))
    Allocate (r(n))
    Allocate (z(n))
! Read A from data file
    Read (nin,*)(a(i,1:n),i=1,n)
! Read B from data file
    Read (nin,*)(b(i,1:m),i=1,n)
! Compute the trace of A
    tr = (0.0_nag_wp,0.0_nag_wp)
    Do i = 1, n
    tr = tr + a(i,i)
    End Do
    Find exp(tA)B
    irevcm = 0
    ifail = 0
! Initial call to reverse communication interface fOlhbf
revcm: Do
        Call f01hbf(irevcm,n,m,b,ldb,t,tr,b2,ldb2,x,ldx,y,ldy,p,r,z,ccomm, &
            comm,icomm,ifail)
        If (irevcm==0) Then
            Exit revcm
        Else If (irevcm==1) Then
            Compute AB and store in B2
            Call zgemm('N','N',n,m,n,(1.0_nag_wp,0.0_nag_wp),a,lda,b,ldb, &
                (0.0_nag_wp,0.0_nag_wp),b2,ldb2)
        Else If (irevcm==2) Then
            Compute AX and store in Y
            Call zgemm('N','N',n,2,n,(1.0_nag_wp,0.0_nag_wp),a,lda,x,ldx, &
                (0.0_nag_wp,0.0_nag_wp),y,ldy)
        Else If (irevcm==3) Then
            Compute A^H Y and store in X
            Call zgemm('C','N',n,2,n,(1.0_nag_wp,0.0_nag_wp),a,lda,y,ldy, &
                (0.0_nag_wp,0.0_nag_wp),x,l\overline{d}x)
        Else If (irevcm==4) Then
            Compute Az and store in p
            Call zgemm('N','N',n,1,n,(1.0_nag_wp,0.0_nag_wp),a,lda,z,n, &
                (0.0_nag_wp,0.0_nag_wp),p,n)
        Else If (irevcm==5) Then
            Compute A^H z and store in r
            Call zgemm('C','N',n,1,n,(1.0_nag_wp,0.O_nag_wp),a,lda,z,n, &
                (0.0_nag_wp,0.0_nag_wp),r,n)
    End If
Return to fOlhbf
End Do revcm
```

```
    If (ifail==0) Then
    Print solution
    ifail = 0
    Call x04daf('G','N',n,m,b,ldb,'exp(tA)B',ifail)
    End If
End Program f01hbfe
```

$!$

10.2 Program Data

FO1HBF Example Program Data

4	$(1.1,0.0)$:Values of $\mathrm{N}, \mathrm{M}, \mathrm{T}$		
$(0.7,0.8)$	$(-0.2,0.0)$	$(1.0,0.0)$	$(0.6,0.5)$	
$(0.3,0.7)$	$(0.7,0.0)$	$(0.9,3.0)$	$(1.0,0.8)$	
$(0.3,3.0)$	$(-7.0,0.0)$	$(0.2,0.6)$	$(0.7,0.5)$	
$(0.0,0.9)$	$(4.0,0.0)$	$(0.0,0.0)$	$(0.2,0.0)$	$:$ End of matrix A
$(0.1,0.0)$	$(1.2,0.1)$:End of matrix B	

10.3 Program Results

FO1HBF Example Program R		
$\exp (t A) B$		
	1	2
1	-15.3125	-4.5605
	5.9123	-2.4288
2	12.3396	9.2005
	-50.6993	-10.3632
3	-65.4353	-17.6075
	34.3271	-1.0019
4	45.6506	11.3339
	-28.3253	0.1127

