
NAG Library Routine Document

F01EFF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01EFF computes the matrix function, f Að Þ, of a real symmetric n by n matrix A. f Að Þ must also be a
real symmetric matrix.

2 Specification

SUBROUTINE F01EFF (UPLO, N, A, LDA, F, IUSER, RUSER, IFLAG, IFAIL)

INTEGER N, LDA, IUSER(*), IFLAG, IFAIL
REAL (KIND=nag_wp) A(LDA,*), RUSER(*)
CHARACTER(1) UPLO
EXTERNAL F

3 Description

f Að Þ is computed using a spectral factorization of A

A ¼ QDQT;

where D is the diagonal matrix whose diagonal elements, di, are the eigenvalues of A, and Q is an
orthogonal matrix whose columns are the eigenvectors of A. f Að Þ is then given by

f Að Þ ¼ Qf Dð ÞQT;

where f Dð Þ is the diagonal matrix whose ith diagonal element is f dið Þ. See for example Section 4.5 of
Higham (2008). f dið Þ is assumed to be real.

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Parameters

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of the matrix A is stored.

If UPLO ¼ L , the lower triangle of the matrix A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n symmetric matrix A.

F01 – Matrix Operations, Including Inversion F01EFF

Mark 25 F01EFF.1

If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if IFAIL ¼ 0, the upper or lower triangular part of the n by n matrix function, f Að Þ.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01EFF
is called.

Constraint: LDA � max 1;Nð Þ.

5: F – SUBROUTINE, supplied by the user. External Procedure

The subroutine F evaluates f zið Þ at a number of points zi.

The specification of F is:

SUBROUTINE F (IFLAG, N, X, FX, IUSER, RUSER)

INTEGER IFLAG, N, IUSER(*)
REAL (KIND=nag_wp) X(N), FX(N), RUSER(*)

1: IFLAG – INTEGER Input/Output

On entry: IFLAG will be zero.

On exit: IFLAG should either be unchanged from its entry value of zero, or may be set
nonzero to indicate that there is a problem in evaluating the function f xð Þ; for instance
f xð Þ may not be defined, or may be complex. If IFLAG is returned as nonzero then
F01EFF will terminate the computation, with IFAIL ¼ �6.

2: N – INTEGER Input

On entry: n, the number of function values required.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the n points x1; x2; . . . ; xn at which the function f is to be evaluated.

4: FXðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n function values. FXðiÞ should return the value f xið Þ, for i ¼ 1; 2; . . . ; n.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the parameters IUSER and RUSER as supplied to F01EFF. You are free
to use the arrays IUSER and RUSER to supply information to F as an alternative to
using COMMON global variables.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program
from which F01EFF is called. Parameters denoted as Input must not be changed by this
procedure.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by F01EFF, but are passed directly to F and may be used to pass
information to this routine as an alternative to using COMMON global variables.

F01EFF NAG Library Manual

F01EFF.2 Mark 25

8: IFLAG – INTEGER Output

On exit: IFLAG ¼ 0, unless you have set IFLAG nonzero inside F, in which case IFLAG will be
the value you set and IFAIL will be set to IFAIL ¼ �6.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0

The computation of the spectral factorization failed to converge.

IFAIL ¼ �1

On entry, UPLO ¼ valueh i.
Constraint: UPLO ¼ L or U .

IFAIL ¼ �2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3

An internal error occurred when computing the spectral factorization. Please contact NAG.

IFAIL ¼ �4

On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �6

IFLAG was set to a nonzero value in F.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

F01 – Matrix Operations, Including Inversion F01EFF

Mark 25 F01EFF.3

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

Provided that f Dð Þ can be computed accurately then the computed matrix function will be close to the
exact matrix function. See Section 10.2 of Higham (2008) for details and further discussion.

8 Parallelism and Performance

F01EFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01EFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The integer allocatable memory required is N, and the real allocatable memory required is approximately
Nþ nbþ 4ð Þ � N, where nb is the block size required by F08FAF (DSYEV).

The cost of the algorithm is O n3ð Þ plus the cost of evaluating f Dð Þ. If �̂i is the ith computed eigenvalue

of A, then the user-supplied subroutine F will be asked to evaluate the function f at f �̂i

� �
,

i ¼ 1; 2; . . . ; n.

For further information on matrix functions, see Higham (2008).

F01FFF can be used to find the matrix function f Að Þ for a complex Hermitian matrix A.

10 Example

This example finds the matrix cosine, cos Að Þ, of the symmetric matrix

A ¼
1 2 3 4
2 1 2 3
3 2 1 2
4 3 2 1

0
B@

1
CA:

10.1 Program Text

! F01EFF Example Program Text
! Mark 25 Release. NAG Copyright 2014.

Module f01effe_mod

! F01EFF Example Program Module:
! Parameters and User-defined Routines

! nin: the input channel number
! nout: the output channel number

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..

F01EFF NAG Library Manual

F01EFF.4 Mark 25

Private
Public :: f

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine f(iflag,n,x,fx,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fx(n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: cos

! .. Executable Statements ..
fx(1:n) = cos(x(1:n))

Return
End Subroutine f

End Module f01effe_mod
Program f01effe

! F01EFF Example Main Program

! .. Use Statements ..
Use nag_library, Only: f01eff, nag_wp, x04caf
Use f01effe_mod, Only: f, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: i, ierr, ifail, iflag, lda, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’F01EFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
Read (nin,*) uplo

lda = n
Allocate (a(lda,n))

! Read A from data file

If (uplo==’U’ .Or. uplo==’u’) Then
Read (nin,*)(a(i,i:n),i=1,n)

Else
Read (nin,*)(a(i,1:i),i=1,n)

End If

! Find f(A)

ifail = 0
Call f01eff(uplo,n,a,lda,f,iuser,ruser,iflag,ifail)

! Print solution

ierr = 0
Call x04caf(uplo,’N’,n,n,a,lda,’Symmetric f(A)’,ierr)

End Program f01effe

F01 – Matrix Operations, Including Inversion F01EFF

Mark 25 F01EFF.5

10.2 Program Data

F01EFF Example Program Data

4 :Value of N
’U’ :Value of UPLO

1.0 2.0 3.0 4.0
1.0 2.0 3.0

1.0 2.0
1.0 :End of matrix A

10.3 Program Results

F01EFF Example Program Results

Symmetric f(A)
1 2 3 4

1 -0.5420 -0.6612 -0.0261 0.1580
2 0.2306 -0.3396 -0.0261
3 0.2306 -0.6612
4 -0.5420

F01EFF NAG Library Manual

F01EFF.6 (last) Mark 25

	F01EFF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Higham (2008)

	5 Parameters
	UPLO
	N
	A
	LDA
	F
	IFLAG
	N
	X
	FX
	IUSER
	RUSER

	IUSER
	RUSER
	IFLAG
	IFAIL

	6 Error Indicators and Warnings
	IFAIL>0
	IFAIL=-1
	IFAIL=-2
	IFAIL=-3
	IFAIL=-4
	IFAIL=-6
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

