
NAG Library Routine Document

F01EFF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F01EFF computes the matrix function, f Að Þ, of a real symmetric n by n matrix A. f Að Þ must also be a
real symmetric matrix.

2 Specification

SUBROUTINE F01EFF (UPLO, N, A, LDA, F, IUSER, RUSER, IFLAG, IFAIL)

INTEGER N, LDA, IUSER(*), IFLAG, IFAIL
REAL (KIND=nag_wp) A(LDA,*), RUSER(*)
CHARACTER(1) UPLO
EXTERNAL F

3 Description

f Að Þ is computed using a spectral factorization of A

A ¼ QDQT;

where D is the diagonal matrix whose diagonal elements, di, are the eigenvalues of A, and Q is an
orthogonal matrix whose columns are the eigenvectors of A. f Að Þ is then given by

f Að Þ ¼ Qf Dð ÞQT;

where f Dð Þ is the diagonal matrix whose ith diagonal element is f dið Þ. See for example Section 4.5 of
Higham (2008). f dið Þ is assumed to be real.

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Parameters

1: UPLO – CHARACTER(1) Input

On entry: if UPLO ¼ U , the upper triangle of the matrix A is stored.

If UPLO ¼ L , the lower triangle of the matrix A is stored.

Constraint: UPLO ¼ U or L .

2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

3: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least N.

On entry: the n by n symmetric matrix A.
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If UPLO ¼ U , the upper triangular part of A must be stored and the elements of the array
below the diagonal are not referenced.

If UPLO ¼ L , the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if IFAIL ¼ 0, the upper or lower triangular part of the n by n matrix function, f Að Þ.

4: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F01EFF
is called.

Constraint: LDA � max 1;Nð Þ.

5: F – SUBROUTINE, supplied by the user. External Procedure

The subroutine F evaluates f zið Þ at a number of points zi.

The specification of F is:

SUBROUTINE F (IFLAG, N, X, FX, IUSER, RUSER)

INTEGER IFLAG, N, IUSER(*)
REAL (KIND=nag_wp) X(N), FX(N), RUSER(*)

1: IFLAG – INTEGER Input/Output

On entry: IFLAG will be zero.

On exit: IFLAG should either be unchanged from its entry value of zero, or may be set
nonzero to indicate that there is a problem in evaluating the function f xð Þ; for instance
f xð Þ may not be defined, or may be complex. If IFLAG is returned as nonzero then
F01EFF will terminate the computation, with IFAIL ¼ �6.

2: N – INTEGER Input

On entry: n, the number of function values required.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the n points x1; x2; . . . ; xn at which the function f is to be evaluated.

4: FXðNÞ – REAL (KIND=nag_wp) array Output

On exit: the n function values. FXðiÞ should return the value f xið Þ, for i ¼ 1; 2; . . . ; n.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the parameters IUSER and RUSER as supplied to F01EFF. You are free
to use the arrays IUSER and RUSER to supply information to F as an alternative to
using COMMON global variables.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program
from which F01EFF is called. Parameters denoted as Input must not be changed by this
procedure.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by F01EFF, but are passed directly to F and may be used to pass
information to this routine as an alternative to using COMMON global variables.
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8: IFLAG – INTEGER Output

On exit: IFLAG ¼ 0, unless you have set IFLAG nonzero inside F, in which case IFLAG will be
the value you set and IFAIL will be set to IFAIL ¼ �6.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL > 0

The computation of the spectral factorization failed to converge.

IFAIL ¼ �1

On entry, UPLO ¼ valueh i.
Constraint: UPLO ¼ L or U .

IFAIL ¼ �2

On entry, N ¼ valueh i.
Constraint: N � 0.

IFAIL ¼ �3

An internal error occurred when computing the spectral factorization. Please contact NAG.

IFAIL ¼ �4

On entry, LDA ¼ valueh i and N ¼ valueh i.
Constraint: LDA � N.

IFAIL ¼ �6

IFLAG was set to a nonzero value in F.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.
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IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

Provided that f Dð Þ can be computed accurately then the computed matrix function will be close to the
exact matrix function. See Section 10.2 of Higham (2008) for details and further discussion.

8 Parallelism and Performance

F01EFF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F01EFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The integer allocatable memory required is N, and the real allocatable memory required is approximately
Nþ nbþ 4ð Þ � N, where nb is the block size required by F08FAF (DSYEV).

The cost of the algorithm is O n3ð Þ plus the cost of evaluating f Dð Þ. If �̂i is the ith computed eigenvalue

of A, then the user-supplied subroutine F will be asked to evaluate the function f at f �̂i

� �
,

i ¼ 1; 2; . . . ; n.

For further information on matrix functions, see Higham (2008).

F01FFF can be used to find the matrix function f Að Þ for a complex Hermitian matrix A.

10 Example

This example finds the matrix cosine, cos Að Þ, of the symmetric matrix

A ¼
1 2 3 4
2 1 2 3
3 2 1 2
4 3 2 1

0
B@

1
CA:

10.1 Program Text

! F01EFF Example Program Text
! Mark 25 Release. NAG Copyright 2014.

Module f01effe_mod

! F01EFF Example Program Module:
! Parameters and User-defined Routines

! nin: the input channel number
! nout: the output channel number

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
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Private
Public :: f

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine f(iflag,n,x,fx,iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (Inout) :: iflag
Integer, Intent (In) :: n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: fx(n)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: cos

! .. Executable Statements ..
fx(1:n) = cos(x(1:n))

Return
End Subroutine f

End Module f01effe_mod
Program f01effe

! F01EFF Example Main Program

! .. Use Statements ..
Use nag_library, Only: f01eff, nag_wp, x04caf
Use f01effe_mod, Only: f, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Integer :: i, ierr, ifail, iflag, lda, n
Character (1) :: uplo

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:)
Real (Kind=nag_wp) :: ruser(1)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’F01EFF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) n
Read (nin,*) uplo

lda = n
Allocate (a(lda,n))

! Read A from data file

If (uplo==’U’ .Or. uplo==’u’) Then
Read (nin,*)(a(i,i:n),i=1,n)

Else
Read (nin,*)(a(i,1:i),i=1,n)

End If

! Find f( A )

ifail = 0
Call f01eff(uplo,n,a,lda,f,iuser,ruser,iflag,ifail)

! Print solution

ierr = 0
Call x04caf(uplo,’N’,n,n,a,lda,’Symmetric f(A)’,ierr)

End Program f01effe
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10.2 Program Data

F01EFF Example Program Data

4 :Value of N
’U’ :Value of UPLO

1.0 2.0 3.0 4.0
1.0 2.0 3.0

1.0 2.0
1.0 :End of matrix A

10.3 Program Results

F01EFF Example Program Results

Symmetric f(A)
1 2 3 4

1 -0.5420 -0.6612 -0.0261 0.1580
2 0.2306 -0.3396 -0.0261
3 0.2306 -0.6612
4 -0.5420
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