
NAG Library Routine Document

E04GYF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E04GYF is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of a sum of
squares of m nonlinear functions in n variables m � nð Þ. First derivatives are required.

It is intended for functions which are continuous and which have continuous first and second derivatives
(although it will usually work even if the derivatives have occasional discontinuities).

2 Specification

SUBROUTINE E04GYF (M, N, LSFUN2, X, FSUMSQ, W, LW, IUSER, RUSER, IFAIL)

INTEGER M, N, LW, IUSER(*), IFAIL
REAL (KIND=nag_wp) X(N), FSUMSQ, W(LW), RUSER(*)
EXTERNAL LSFUN2

3 Description

E04GYF is similar to the subroutine LSFDQ2 in the NPL Algorithms Library. It is applicable to
problems of the form

MinimizeF xð Þ ¼
Xm

i¼1

fi xð Þ½ �2

where x ¼ x1; x2; . . . ; xnð ÞT and m � n. (The functions fi xð Þ are often referred to as ‘residuals’.) You
must supply a subroutine to evaluate the residuals and their first derivatives at any point x.

Before attempting to minimize the sum of squares, the algorithm checks the subroutine for consistency.
Then, from a starting point supplied by you, a sequence of points is generated which is intended to
converge to a local minimum of the sum of squares. These points are generated using estimates of the
curvature of F xð Þ.

4 References

Gill P E and Murray W (1978) Algorithms for the solution of the nonlinear least squares problem SIAM
J. Numer. Anal. 15 977–992

5 Parameters

1: M – INTEGER Input
2: N – INTEGER Input

On entry: the number m of residuals, fi xð Þ, and the number n of variables, xj.

Constraint: 1 � N � M.

3: LSFUN2 – SUBROUTINE, supplied by the user. External Procedure

You must supply this routine to calculate the vector of values fi xð Þ and the Jacobian matrix of

first derivatives
@fi
@xj

at any point x. It should be tested separately before being used in conjunction

with E04GYF (see the E04 Chapter Introduction).

E04 – Minimizing or Maximizing a Function E04GYF

Mark 25 E04GYF.1



The specification of LSFUN2 is:

SUBROUTINE LSFUN2 (M, N, XC, FVEC, FJAC, LDFJAC, IUSER, RUSER)

INTEGER M, N, LDFJAC, IUSER(*)
REAL (KIND=nag_wp) XC(N), FVEC(M), FJAC(LDFJAC,N), RUSER(*)

Important: the dimension declaration for FJAC must contain the variable LDFJAC, not an
integer constant.

1: M – INTEGER Input

On entry: m, the numbers of residuals.

2: N – INTEGER Input

On entry: n, the numbers of variables.

3: XCðNÞ – REAL (KIND=nag_wp) array Input

On entry: the point x at which the values of the fi and the
@fi
@xj

are required.

4: FVECðMÞ – REAL (KIND=nag_wp) array Output

On exit: FVECðiÞ must contain the value of fi at the point x, for i ¼ 1; 2; . . . ;m.

5: FJACðLDFJAC;NÞ – REAL (KIND=nag_wp) array Output

On exit: FJACði; jÞ must contain the value of
@fi

@xj
at the point x, for i ¼ 1; 2; . . . ;m and

j ¼ 1; 2; . . . ; n.

6: LDFJAC – INTEGER Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from
which E04GYF is called.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

LSFUN2 is called with the parameters IUSER and RUSER as supplied to E04GYF. You
are free to use the arrays IUSER and RUSER to supply information to LSFUN2 as an
alternative to using COMMON global variables.

LSFUN2 must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E04GYF is called. Parameters denoted as Input must not be changed by
this procedure.

4: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: XðjÞ must be set to a guess at the jth component of the position of the minimum, for
j ¼ 1; 2; . . . ; n. The routine checks the first derivatives calculated by LSFUN2 at the starting point
and so is more likely to detect an error in your routine if the initial XðjÞ are nonzero and mutually
distinct.

On exit: the lowest point found during the calculations. Thus, if IFAIL ¼ 0 on exit, XðjÞ is the jth
component of the position of the minimum.

5: FSUMSQ – REAL (KIND=nag_wp) Output

On exit: the value of the sum of squares, F xð Þ, corresponding to the final point stored in X.

E04GYF NAG Library Manual

E04GYF.2 Mark 25



6: WðLWÞ – REAL (KIND=nag_wp) array Workspace
7: LW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which E04GYF is
called.

Constraints:

if N > 1, LW � 8� Nþ 2� N� Nþ 2�M� Nþ 3�M;
if N ¼ 1, LW � 11þ 5�M.

8: IUSERð�Þ – INTEGER array User Workspace
9: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E04GYF, but are passed directly to LSFUN2 and may be
used to pass information to this routine as an alternative to using COMMON global variables.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
parameters may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Note: E04GYF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1,
or M < N,
or LW < 8� Nþ 2� N� Nþ 2�M� Nþ 3�M, when N > 1,
or LW < 11þ 5�M, when N ¼ 1.

IFAIL ¼ 2

There have been 50� n calls of LSFUN2, yet the algorithm does not seem to have converged.
This may be due to an awkward function or to a poor starting point, so it is worth restarting
E04GYF from the final point held in X.

IFAIL ¼ 3

The final point does not satisfy the conditions for acceptance as a minimum, but no lower point
could be found.

IFAIL ¼ 4

An auxiliary routine has been unable to complete a singular value decomposition in a reasonable
number of sub-iterations.

E04 – Minimizing or Maximizing a Function E04GYF

Mark 25 E04GYF.3



IFAIL ¼ 5
IFAIL ¼ 6
IFAIL ¼ 7
IFAIL ¼ 8

There is some doubt about whether the point Xx found by E04GYF is a minimum of F xð Þ. The
degree of confidence in the result decreases as IFAIL increases. Thus, when IFAIL ¼ 5, it is
probable that the final x gives a good estimate of the position of a minimum, but when IFAIL ¼ 8
it is very unlikely that the routine has found a minimum.

IFAIL ¼ 9

It is very likely that you have made an error in forming the derivatives
@fi
@xj

in LSFUN2.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

If you are not satisfied with the result (e.g., because IFAIL lies between 3 and 8), it is worth restarting
the calculations from a different starting point (not the point at which the failure occurred) in order to
avoid the region which caused the failure. Repeated failure may indicate some defect in the formulation
of the problem.

7 Accuracy

If the problem is reasonably well scaled and a successful exit is made then, for a computer with a
mantissa of t decimals, one would expect to get t=2� 1 decimals accuracy in the components of x and
between t� 1 (if F xð Þ is of order 1 at the minimum) and 2t� 2 (if F xð Þ is close to zero at the
minimum) decimals accuracy in F xð Þ.

8 Parallelism and Performance

E04GYF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E04GYF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The number of iterations required depends on the number of variables, the number of residuals and their
behaviour, and the distance of the starting point from the solution. The number of multiplications
performed per iteration of E04GYF varies, but for m� n is approximately n�m2 þO n3ð Þ. In

E04GYF NAG Library Manual

E04GYF.4 Mark 25



addition, each iteration makes at least one call of LSFUN2. So, unless the residuals and their derivatives
can be evaluated very quickly, the run time will be dominated by the time spent in LSFUN2.

Ideally the problem should be scaled so that the minimum value of the sum of squares is in the range
0; 1ð Þ and so that at points a unit distance away from the solution the sum of squares is approximately a

unit value greater than at the minimum. It is unlikely that you will be able to follow these
recommendations very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the
difficulty of the minimization problem, so that E04GYF will take less computer time.

When the sum of squares represents the goodness-of-fit of a nonlinear model to observed data, elements
of the variance-covariance matrix of the estimated regression coefficients can be computed by a
subsequent call to E04YCF, using information returned in segments of the workspace array W. See
E04YCF for further details.

10 Example

This example finds the least squares estimates of x1, x2 and x3 in the model

y ¼ x1 þ
t1

x2t2 þ x3t3

using the 15 sets of data given in the following table.

y t1 t2 t3
0:14 1:0 15:0 1:0
0:18 2:0 14:0 2:0
0:22 3:0 13:0 3:0
0:25 4:0 12:0 4:0
0:29 5:0 11:0 5:0
0:32 6:0 10:0 6:0
0:35 7:0 9:0 7:0
0:39 8:0 8:0 8:0
0:37 9:0 7:0 7:0
0:58 10:0 6:0 6:0
0:73 11:0 5:0 5:0
0:96 12:0 4:0 4:0
1:34 13:0 3:0 3:0
2:10 14:0 2:0 2:0
4:39 15:0 1:0 1:0

The program uses 0:5; 1:0; 1:5ð Þ as the initial guess at the position of the minimum.

10.1 Program Text

! E04GYF Example Program Text
! Mark 25 Release. NAG Copyright 2014.

Module e04gyfe_mod

! E04GYF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: lsfun2

! .. Parameters ..
Integer, Parameter, Public :: m = 15, n = 3, nin = 5, &

nout = 6, nt = 3
Integer, Parameter, Public :: lw = 8*n + 2*n*n + 2*m*n + 3*m

! .. Local Arrays ..
Real (Kind=nag_wp), Public, Save :: t(m,nt), y(m)

Contains

E04 – Minimizing or Maximizing a Function E04GYF

Mark 25 E04GYF.5



Subroutine lsfun2(m,n,xc,fvec,fjac,ldfjac,iuser,ruser)
! Routine to evaluate the residuals and their 1st derivatives.

! .. Scalar Arguments ..
Integer, Intent (In) :: ldfjac, m, n

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: fjac(ldfjac,n), ruser(*)
Real (Kind=nag_wp), Intent (Out) :: fvec(m)
Real (Kind=nag_wp), Intent (In) :: xc(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: denom, dummy
Integer :: i

! .. Executable Statements ..
Do i = 1, m

denom = xc(2)*t(i,2) + xc(3)*t(i,3)
fvec(i) = xc(1) + t(i,1)/denom - y(i)
fjac(i,1) = 1.0_nag_wp
dummy = -1.0_nag_wp/(denom*denom)
fjac(i,2) = t(i,1)*t(i,2)*dummy
fjac(i,3) = t(i,1)*t(i,3)*dummy

End Do

Return

End Subroutine lsfun2
End Module e04gyfe_mod
Program e04gyfe

! E04GYF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e04gyf, nag_wp
Use e04gyfe_mod, Only: lsfun2, lw, m, n, nin, nout, nt, t, y

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: fsumsq
Integer :: i, ifail

! .. Local Arrays ..
Real (Kind=nag_wp) :: ruser(1), w(lw), x(n)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’E04GYF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Observations of TJ (J = 1, 2, ..., nt) are held in T(I, J)
! (I = 1, 2, ..., m)

Do i = 1, m
Read (nin,*) y(i), t(i,1:nt)

End Do

x(1:nt) = (/0.5_nag_wp,1.0_nag_wp,1.5_nag_wp/)

ifail = -1
Call e04gyf(m,n,lsfun2,x,fsumsq,w,lw,iuser,ruser,ifail)

Select Case (ifail)
Case (0,2:8,10:)

Write (nout,*)
Write (nout,99999) ’On exit, the sum of squares is’, fsumsq
Write (nout,99999) ’at the point’, x(1:n)

End Select

99999 Format (1X,A,3F12.4)
End Program e04gyfe

E04GYF NAG Library Manual

E04GYF.6 Mark 25



10.2 Program Data

E04GYF Example Program Data
0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0
2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0

10.3 Program Results

E04GYF Example Program Results

On exit, the sum of squares is 0.0082
at the point 0.0824 1.1330 2.3437

E04 – Minimizing or Maximizing a Function E04GYF

Mark 25 E04GYF.7 (last)


	E04GYF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Gill and Murray (1978)

	5 Parameters
	M
	N
	LSFUN2
	M
	N
	XC
	FVEC
	FJAC
	LDFJAC
	IUSER
	RUSER

	X
	FSUMSQ
	W
	LW
	IUSER
	RUSER
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction




