NAG Library Routine Document
 D03PRF

Abstract

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

D03PRF integrates a system of linear or nonlinear, first-order, time-dependent partial differential equations (PDEs) in one space variable, with scope for coupled ordinary differential equations (ODEs), and automatic adaptive spatial remeshing. The spatial discretization is performed using the Keller box scheme (see Keller (1970)) and the method of lines is employed to reduce the PDEs to a system of ODEs. The resulting system is solved using a Backward Differentiation Formula (BDF) method or a Theta method (switching between Newton's method and functional iteration).

2 Specification

```
SUBROUTINE DO3PRF (NPDE, TS, TOUT, PDEDEF, BNDARY, UVINIT, U, NPTS, X, &
    NLEFT, NCODE, ODEDEF, NXI, XI, NEQN, RTOL, ATOL, &, &
    ITOL, NORM, LAOPT, ALGOPT, REMESH, NXFIX, XFIX, &
    NRMESH, DXMESH, TRMESH, IPMINF, XRATIO, CON, MONITF, &
    RSAVE, LRSAVE, ISAVE, LISAVE, ITASK, ITRACE, IND, &
    IFAIL)
INTEGER NPDE, NPTS, NLEFT, NCODE, NXI, NEQN, ITOL, NXFIX, &
    NRMESH, IPMINF, LRSAVE, ISAVE(LISAVE), LISAVE, &
    ITASK, ITRACE, IND, IFAIL
REAL (KIND=nag_wp) TS, TOUT, U(NEQN), X(NPTS), XI(*), RTOL(*), ATOL(*), &
    ALGOPT(30), XFIX(*), DXMESH, TRMESH, XRATIO, CON, &
    RSAVE (LRSAVE)
LOGICAL REMESH
CHARACTER(1) NORM, LAOPT
EXTERNAL PDEDEF, BNDARY, UVINIT, ODEDEF, MONITF
```


3 Description

D03PRF integrates the system of first-order PDEs and coupled ODEs given by the master equations:

$$
\begin{gather*}
G_{i}\left(x, t, U, U_{x}, U_{t}, V, \dot{V}\right)=0, \quad i=1,2, \ldots, \mathrm{NPDE}, \quad a \leq x \leq b, t \geq t_{0} \tag{1}\\
R_{i}\left(t, V, \dot{V}, \xi, U^{*}, U_{x}^{*}, U_{t}^{*}\right)=0, \quad i=1,2, \ldots, \mathrm{NCODE} \tag{2}
\end{gather*}
$$

In the PDE part of the problem given by (1), the functions G_{i} must have the general form

$$
\begin{equation*}
G_{i}=\sum_{j=1}^{\mathrm{NPDE}} P_{i, j} \frac{\partial U_{j}}{\partial t}+\sum_{j=1}^{\mathrm{NCODE}} Q_{i, j} \dot{V}_{j}+S_{i}=0, \quad i=1,2, \ldots, \mathrm{NPDE} \tag{3}
\end{equation*}
$$

where $P_{i, j}, Q_{i, j}$ and S_{i} depend on x, t, U, U_{x} and V.
The vector U is the set of PDE solution values

$$
U(x, t)=\left[U_{1}(x, t), \ldots, U_{\mathrm{NPDE}}(x, t)\right]^{\mathrm{T}}
$$

and the vector U_{x} is the partial derivative with respect to x. The vector V is the set of ODE solution values

$$
V(t)=\left[V_{1}(t), \ldots, V_{\mathrm{NCODE}}(t)\right]^{\mathrm{T}}
$$

and \dot{V} denotes its derivative with respect to time.

In the ODE part given by (2), ξ represents a vector of n_{ξ} spatial coupling points at which the ODEs are coupled to the PDEs. These points may or may not be equal to some of the PDE spatial mesh points. U^{*}, U_{x}^{*} and U_{t}^{*} are the functions U, U_{x} and U_{t} evaluated at these coupling points. Each R_{i} may only depend linearly on time derivatives. Hence equation (2) may be written more precisely as

$$
\begin{equation*}
R=A-B \dot{V}-C U_{t}^{*} \tag{4}
\end{equation*}
$$

where $R=\left[R_{1}, \ldots, R_{\mathrm{NCODE}}\right]^{\mathrm{T}}, A$ is a vector of length NCODE, B is an NCODE by NCODE matrix, C is an NCODE by $\left(n_{\xi} \times\right.$ NPDE $)$ matrix and the entries in A, B and C may depend on t, ξ, U^{*}, U_{x}^{*} and V. In practice you only need to supply a vector of information to define the ODEs and not the matrices B and C. (See Section 5 for the specification of ODEDEF.)
The integration in time is from t_{0} to $t_{\text {out }}$, over the space interval $a \leq x \leq b$, where $a=x_{1}$ and $b=x_{\text {NPTS }}$ are the leftmost and rightmost points of a mesh $x_{1}, x_{2}, \ldots, x_{\text {NPTS }}$ defined initially by you and (possibly) adapted automatically during the integration according to user-specified criteria.

The PDE system which is defined by the functions G_{i} must be specified in PDEDEF.
The initial $\left(t=t_{0}\right)$ values of the functions $U(x, t)$ and $V(t)$ must be specified in UVINIT. Note that UVINIT will be called again following any remeshing, and so $U\left(x, t_{0}\right)$ should be specified for all values of x in the interval $a \leq x \leq b$, and not just the initial mesh points.
For a first-order system of PDEs, only one boundary condition is required for each PDE component U_{i}. The NPDE boundary conditions are separated into n_{a} at the left-hand boundary $x=a$, and n_{b} at the right-hand boundary $x=b$, such that $n_{a}+n_{b}=$ NPDE. The position of the boundary condition for each component should be chosen with care; the general rule is that if the characteristic direction of U_{i} at the left-hand boundary (say) points into the interior of the solution domain, then the boundary condition for U_{i} should be specified at the left-hand boundary. Incorrect positioning of boundary conditions generally results in initialization or integration difficulties in the underlying time integration routines.

The boundary conditions have the master equation form:

$$
\begin{equation*}
G_{i}^{L}\left(x, t, U, U_{t}, V, \dot{V}\right)=0 \quad \text { at } x=a, \quad i=1,2, \ldots, n_{a} \tag{5}
\end{equation*}
$$

at the left-hand boundary, and

$$
\begin{equation*}
G_{i}^{R}\left(x, t, U, U_{t}, V, \dot{V}\right)=0 \quad \text { at } x=b, \quad i=1,2, \ldots, n_{b} \tag{6}
\end{equation*}
$$

at the right-hand boundary.
Note that the functions G_{i}^{L} and G_{i}^{R} must not depend on U_{x}, since spatial derivatives are not determined explicitly in the Keller box scheme routines. If the problem involves derivative (Neumann) boundary conditions then it is generally possible to restate such boundary conditions in terms of permissible variables. Also note that G_{i}^{L} and G_{i}^{R} must be linear with respect to time derivatives, so that the boundary conditions have the general form:

$$
\begin{equation*}
\sum_{j=1}^{\mathrm{NPDE}} E_{i, j}^{L} \frac{\partial U_{j}}{\partial t}+\sum_{j=1}^{\mathrm{NCODE}} H_{i, j}^{L} \dot{V}_{j}+K_{i}^{L}=0, \quad i=1,2, \ldots, n_{a} \tag{7}
\end{equation*}
$$

at the left-hand boundary, and

$$
\begin{equation*}
\sum_{j=1}^{\mathrm{NPDE}} E_{i, j}^{R} \frac{\partial U_{j}}{\partial t}+\sum_{j=1}^{\mathrm{NCODE}} H_{i, j}^{R} \dot{V}_{j}+K_{i}^{R}=0, \quad i=1,2, \ldots, n_{b} \tag{8}
\end{equation*}
$$

at the right-hand boundary, where $E_{i, j}^{L}, E_{i, j}^{R}, H_{i, j}^{L}, H_{i, j}^{R}, K_{i}^{L}$ and K_{i}^{R} depend on x, t, U and V only.
The boundary conditions must be specified in BNDARY.
The problem is subject to the following restrictions:
(i) $P_{i, j}, Q_{i, j}$ and S_{i} must not depend on any time derivatives;
(ii) $t_{0}<t_{\text {out }}$, so that integration is in the forward direction;
(iii) The evaluation of the function G_{i} is done approximately at the mid-points of the mesh $\mathrm{X}(i)$, for $i=1,2, \ldots$, NPTS, by calling PDEDEF for each mid-point in turn. Any discontinuities in the function must therefore be at one or more of the fixed mesh points specified by XFIX;
(iv) At least one of the functions $P_{i, j}$ must be nonzero so that there is a time derivative present in the PDE problem.
The algebraic-differential equation system which is defined by the functions R_{i} must be specified in ODEDEF. You must also specify the coupling points ξ in the array XI.

The first-order equations are approximated by a system of ODEs in time for the values of U_{i} at mesh points. In this method of lines approach the Keller box scheme is applied to each PDE in the space variable only, resulting in a system of ODEs in time for the values of U_{i} at each mesh point. In total there are NPDE \times NPTS + NCODE ODEs in time direction. This system is then integrated forwards in time using a Backward Differentiation Formula (BDF) or a Theta method.
The adaptive space remeshing can be used to generate meshes that automatically follow the changing time-dependent nature of the solution, generally resulting in a more efficient and accurate solution using fewer mesh points than may be necessary with a fixed uniform or non-uniform mesh. Problems with travelling wavefronts or variable-width boundary layers for example will benefit from using a moving adaptive mesh. The discrete time-step method used here (developed by Furzeland (1984)) automatically creates a new mesh based on the current solution profile at certain time-steps, and the solution is then interpolated onto the new mesh and the integration continues.
The method requires you to supply MONITF which specifies in an analytic or numeric form the particular aspect of the solution behaviour you wish to track. This so-called monitor function is used to choose a mesh which equally distributes the integral of the monitor function over the domain. A typical choice of monitor function is the second space derivative of the solution value at each point (or some combination of the second space derivatives if more than one solution component), which results in refinement in regions where the solution gradient is changing most rapidly.
You must specify the frequency of mesh updates along with certain other criteria such as adjacent mesh ratios. Remeshing can be expensive and you are encouraged to experiment with the different options in order to achieve an efficient solution which adequately tracks the desired features of the solution.
Note that unless the monitor function for the initial solution values is zero at all user-specified initial mesh points, a new initial mesh is calculated and adopted according to the user-specified remeshing criteria. UVINIT will then be called again to determine the initial solution values at the new mesh points (there is no interpolation at this stage) and the integration proceeds.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific Software Systems (eds J C Mason and M G Cox) 59-72 Chapman and Hall

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems using the method of lines and differential-algebraic integrators Appl. Numer. Math. 5375-397

Berzins M and Furzeland R M (1992) An adaptive theta method for the solution of stiff and nonstiff differential equations Appl. Numer. Math. 9 1-19
Furzeland R M (1984) The construction of adaptive space meshes TNER.85.022 Thornton Research Centre, Chester

Keller H B (1970) A new difference scheme for parabolic problems Numerical Solutions of Partial Differential Equations (ed J Bramble) 2 327-350 Academic Press
Pennington S V and Berzins M (1994) New NAG Library software for first-order partial differential equations ACM Trans. Math. Softw. 20 63-99

5 Parameters

1: NPDE - INTEGER
On entry: the number of PDEs to be solved.
Constraint: $\mathrm{NPDE} \geq 1$.

2: \quad TS - REAL (KIND=nag_wp)
Input/Output
On entry: the initial value of the independent variable t.
Constraint: TS $<$ TOUT.
On exit: the value of t corresponding to the solution values in U . Normally TS $=$ TOUT.

3: \quad TOUT - REAL (KIND=nag_wp)
On entry: the final value of t to which the integration is to be carried out.
4: PDEDEF - SUBROUTINE, supplied by the user.
External Procedure
PDEDEF must evaluate the functions G_{i} which define the system of PDEs. PDEDEF is called approximately midway between each pair of mesh points in turn by D03PRF.

The specification of PDEDEF is:	
1:	NPDE - INTEGER Input
	On entry: the number of PDEs in the system.
2 :	T - REAL (KIND=nag_wp) Input
	On entry: the current value of the independent variable t.
3:	X - REAL (KIND=nag_wp) Input
	On entry: the current value of the space variable x.
4:	$\mathrm{U}(\mathrm{NPDE})$ - REAL (KIND=$=$ nag_wp) array Input
	On entry: $\mathrm{U}(i)$ contains the value of the component $U_{i}(x, t)$, for $i=1,2, \ldots$, NPDE.
5:	UDOT(NPDE) - REAL (KIND=nag_wp) array Input
	On entry: $\operatorname{UDOT}(i)$ contains the value of the component $\frac{\partial U_{i}(x, t)}{\partial t}$, for $i=1,2, \ldots$, NPDE.
6 :	UX(NPDE) - REAL (KIND=nag_wp) array Input
	On entry: $\mathrm{UX}(i)$ contains the value of the component $\frac{\partial U_{i}(x, t)}{\partial x}$, for $i=1,2, \ldots$, NPDE.
7:	NCODE - INTEGER Input
	On entry: the number of coupled ODEs in the system.

8: $\quad \mathrm{V}(\mathrm{NCODE})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input
On entry: if NCODE $>0, \mathrm{~V}(i)$ contains the value of the component $V_{i}(t)$, for $i=1,2, \ldots$, NCODE.

9: VDOT(NCODE) - REAL (KIND=nag_wp) array
Input
On entry: if $\mathrm{NCODE}>0, \operatorname{VDOT}(i)$ contains the value of component $\dot{V}_{i}(t)$, for $i=1,2, \ldots$, NCODE.

10: $\quad \operatorname{RES}(\mathrm{NPDE})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Output
On exit: $\operatorname{RES}(i)$ must contain the i th component of G, for $i=1,2, \ldots$, NPDE, where G is defined as

$$
\begin{equation*}
G_{i}=\sum_{j=1}^{\mathrm{NPDE}} P_{i, j} \frac{\partial U_{j}}{\partial t}+\sum_{j=1}^{\mathrm{NCODE}} Q_{i, j} \dot{V}_{j} \tag{9}
\end{equation*}
$$

i.e., only terms depending explicitly on time derivatives, or

$$
\begin{equation*}
G_{i}=\sum_{j=1}^{\mathrm{NPDE}} P_{i, j} \frac{\partial U_{j}}{\partial t}+\sum_{j=1}^{\mathrm{NCODE}} Q_{i, j} \dot{V}_{j}+S_{i}, \tag{10}
\end{equation*}
$$

i.e., all terms in equation (3).

The definition of G is determined by the input value of IRES.
11: IRES - INTEGER
On entry: the form of G_{i} that must be returned in the array RES.
IRES $=-1$
Equation (9) must be used.
IRES $=1$
Equation (10) must be used.
On exit: should usually remain unchanged. However, you may set IRES to force the integration routine to take certain actions, as described below:
IRES $=2$
Indicates to the integrator that control should be passed back immediately to the calling (sub)routine with the error indicator set to $\operatorname{IFAIL}=6$.

IRES $=3$
Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set IRES $=3$ when a physically meaningless input or output value has been generated. If you consecutively set $\operatorname{IRES}=3$, then D03PRF returns to the calling subroutine with the error indicator set to $\mathrm{IFAIL}=4$.

PDEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D03PRF is called. Parameters denoted as Input must not be changed by this procedure.

5: BNDARY - SUBROUTINE, supplied by the user.
External Procedure
BNDARY must evaluate the functions G_{i}^{L} and G_{i}^{R} which describe the boundary conditions, as given in (5) and (6).

The specification of BNDARY is:
SUBROUTINE BNDARY (NPDE, T, IBND, NOBC, U, UDOT, NCODE, V, VDOT, \& RES, IRES)

INTEGER NPDE, IBND, NOBC, NCODE, IRES
REAL (KIND=nag_wp) T, U(NPDE), UDOT (NPDE), V(NCODE), \& $\operatorname{VDOT}(\mathrm{NCODE}), \operatorname{RES}(\mathrm{NOBC})$

1: NPDE - INTEGER Input

On entry: the number of PDEs in the system.
2: \quad T - REAL (KIND=nag_wp)
On entry: the current value of the independent variable t.
3: IBND - INTEGER
Input
On entry: specifies which boundary conditions are to be evaluated.
$\operatorname{IBND}=0$
BNDARY must compute the left-hand boundary condition at $x=a$.
IBND $\neq 0$
BNDARY must compute of the right-hand boundary condition at $x=b$.
4: NOBC - INTEGER Input
On entry: specifies the number n_{a} of boundary conditions at the boundary specified by IBND.

5: $\quad \mathrm{U}(\mathrm{NPDE})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Input
On entry: $\mathrm{U}(i)$ contains the value of the component $U_{i}(x, t)$ at the boundary specified by IBND, for $i=1,2, \ldots$, NPDE.

6: UDOT(NPDE) - REAL (KIND=nag_wp) array Input On entry: $\operatorname{UDOT}(i)$ contains the value of the component $\frac{\partial U_{i}(x, t)}{\partial t}$, for $i=1,2, \ldots$, NPDE.

7: NCODE - INTEGER
Input
On entry: the number of coupled ODEs in the system.
8: $\quad \mathrm{V}(\mathrm{NCODE})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input
On entry: if NCODE $>0, \mathrm{~V}(i)$ contains the value of the component $V_{i}(t)$, for $i=1,2, \ldots$, NCODE.

9: \quad VDOT(NCODE) - REAL (KIND=nag_wp) array
Input
On entry: if $\mathrm{NCODE}>0, \operatorname{VDOT}(i)$ contains the value of component $\dot{V}_{i}(t)$, for $i=1,2, \ldots$, NCODE.
Note: $\operatorname{VDOT}(i)$, for $i=1,2, \ldots$, NCODE, may only appear linearly as in (11) and (12).
10: \quad RES (NOBC) - REAL (KIND=nag_wp) array
Output
On exit: $\operatorname{RES}(i)$ must contain the i th component of G^{L} or G^{R}, depending on the value of IBND, for $i=1,2, \ldots$, NOBC, where G^{L} is defined as

$$
\begin{equation*}
G_{i}^{L}=\sum_{j=1}^{\mathrm{NPDE}} E_{i, j}^{L} \frac{\partial U_{j}}{\partial t}+\sum_{j=1}^{\mathrm{NCODE}} H_{i, j}^{L} \dot{V}_{j} \tag{11}
\end{equation*}
$$

i.e., only terms depending explicitly on time derivatives, or

$$
\begin{equation*}
G_{i}^{L}=\sum_{j=1}^{\mathrm{NPDE}} E_{i, j}^{L} \frac{\partial U_{j}}{\partial t}+\sum_{j=1}^{\mathrm{NCODE}} H_{i, j}^{L} \dot{V}_{j}+K_{i}^{L} \tag{12}
\end{equation*}
$$

i.e., all terms in equation (7), and similarly for G_{i}^{R}.

The definitions of G^{L} and G^{R} are determined by the input value of IRES.
11: IRES - INTEGER
Input/Output
On entry: the form of G_{i}^{L} (or G_{i}^{R}) that must be returned in the array RES.
IRES $=-1$
Equation (11) must be used.
IRES $=1$
Equation (12) must be used.
On exit: should usually remain unchanged. However, you may set IRES to force the integration routine to take certain actions as described below:

IRES $=2$
Indicates to the integrator that control should be passed back immediately to the calling (sub)routine with the error indicator set to $\operatorname{IFAIL}=6$.

IRES $=3$
Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set IRES $=3$ when a physically meaningless input or output value has been generated. If you consecutively set $\operatorname{IRES}=3$, then D03PRF returns to the calling subroutine with the error indicator set to $\operatorname{IFAIL}=4$.

BNDARY must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D03PRF is called. Parameters denoted as Input must not be changed by this procedure.

UVINIT - SUBROUTINE, supplied by the user.
External Procedure
UVINIT must supply the initial $\left(t=t_{0}\right)$ values of $U(x, t)$ and $V(t)$ for all values of x in the interval $[a, b]$.


```
4: X(NPTS) - REAL (KIND=nag_wp) array Input
    On entry: the current mesh. X (i) contains the value of }\mp@subsup{x}{i}{}\mathrm{ , for }i=1,2,\ldots,NPTS
    XI(NXI) - REAL (KIND=nag_wp) array Input
    On entry: if NXI >0, XI (i) contains the ODE/PDE coupling point, 首, for
    i=1,2,\ldots,NXI.
    U(NPDE,NPTS) - REAL (KIND=nag_wp) array
                                    Output
    On exit: if NXI > 0, U(i,j) contains the value of the component }\mp@subsup{U}{i}{}(\mp@subsup{x}{j}{},\mp@subsup{t}{0}{})\mathrm{ , for
    i=1,2,\ldots,NPDE and j=1,2,\ldots,NPTS.
    NCODE - INTEGER
        Input
    On entry: the number of coupled ODEs in the system.
    V(NCODE) - REAL (KIND=nag_wp) array Output
    On exit: if NCODE > 0, V (i) must contain the value of component }\mp@subsup{V}{i}{}(\mp@subsup{t}{0}{})\mathrm{ , for
    i=1,2,\ldots.,NCODE.
```

UVINIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D03PRF is called. Parameters denoted as Input must not be changed by this procedure.

7: $\quad \mathrm{U}(\mathrm{NEQN})-$ REAL (KIND=nag_wp) array
Input/Output
On entry: if $\operatorname{IND}=1$, the value of U must be unchanged from the previous call.
On exit: $\mathrm{U}(\mathrm{NPDE} \times(j-1)+i)$ contains the computed solution $U_{i}\left(x_{j}, t\right)$, for $i=1,2, \ldots, \mathrm{NPDE}$ and $j=1,2, \ldots$, NPTS, evaluated at $t=\mathrm{TS}$.

8: NPTS - INTEGER Input
On entry: the number of mesh points in the interval $[a, b]$.
Constraint: NPTS ≥ 3.
X(NPTS) - REAL (KIND=nag_wp) array
Input/Output
On entry: the initial mesh points in the space direction. $\mathrm{X}(1)$ must specify the left-hand boundary, a, and X(NPTS) must specify the right-hand boundary, b.

Constraint: $\mathrm{X}(1)<\mathrm{X}(2)<\cdots<\mathrm{X}($ NPTS $)$.
On exit: the final values of the mesh points.
10: NLEFT - INTEGER
Input
On entry: the number n_{a} of boundary conditions at the left-hand mesh point $\mathrm{X}(1)$.
Constraint: $0 \leq$ NLEFT \leq NPDE.
11: NCODE - INTEGER
Input
On entry: the number of coupled ODE components.
Constraint: $\mathrm{NCODE} \geq 0$.
12: ODEDEF - SUBROUTINE, supplied by the NAG Library or the user. External Procedure ODEDEF must evaluate the functions R, which define the system of ODEs, as given in (4).

If you wish to compute the solution of a system of PDEs only (i.e., $\mathrm{NCODE}=0$), ODEDEF must be the dummy routine D03PEK. (D03PEK is included in the NAG Library.)

The specification of ODEDEF is:

```
SUBROUTINE ODEDEF (NPDE, T, NCODE, V, VDOT, NXI, XI, UCP, UCPX, &
    UCPT, R, IRES)
INTEGER NPDE, NCODE, NXI, IRES
REAL (KIND=nag_wp) T, V(NCODE), VDOT(NCODE), XI(NXI), &
    UCP(NPDE,*), UCPX(NPDE,*), UCPT(NPDE,*), &
    R(NCODE)
```

1: NPDE - INTEGER Input
On entry: the number of PDEs in the system.
2: T - REAL (KIND=$=$ nag_wp) Input
On entry: the current value of the independent variable t.
3: NCODE - INTEGER Input
On entry: the number of coupled ODEs in the system.
4: $\mathrm{V}(\mathrm{NCODE})-$ REAL (KIND=nag_wp) array Input
On entry: if NCODE $>0, \mathrm{~V}(i)$ contains the value of the component $V_{i}(t)$, for $i=1,2, \ldots$, NCODE.

5: $\operatorname{VDOT}(\mathrm{NCODE})$ - REAL (KIND=nag_wp) array Input
On entry: if $\mathrm{NCODE}>0, \operatorname{VDOT}(i)$ contains the value of component $\dot{V}_{i}(t)$, for $i=1,2, \ldots$, NCODE.

6: NXI - INTEGER
Input
On entry: the number of ODE/PDE coupling points.
7: $\quad \mathrm{XI}(\mathrm{NXI})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input
On entry: if NXI $>0, \mathrm{XI}(i)$ contains the $\mathrm{ODE} / \mathrm{PDE}$ coupling point, ξ_{i}, for $i=1,2, \ldots$, NXI.

8: $\quad \operatorname{UCP}(\mathrm{NPDE}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input
On entry: if NXI $>0, \operatorname{UCP}(i, j)$ contains the value of $U_{i}(x, t)$ at the coupling point $x=\xi_{j}$, for $i=1,2, \ldots$, NPDE and $j=1,2, \ldots$, NXI.

9: UCPX (NPDE, *) - REAL (KIND=nag_wp) array
Input
On entry: if NXI $>0, \operatorname{UCPX}(i, j)$ contains the value of $\frac{\partial U_{i}(x, t)}{\partial x}$ at the coupling point $x=\xi_{j}$, for $i=1,2, \ldots, \mathrm{NPDE}$ and $j=1,2, \ldots$, NXI.

10: $\operatorname{UCPT}(\mathrm{NPDE}, *)-$ REAL (KIND=nag_wp) array
Input
On entry: if NXI $>0, \operatorname{UCPT}(i, j)$ contains the value of $\frac{\partial U_{i}}{\partial t}$ at the coupling point $x=\xi_{j}$, for $i=1,2, \ldots$, NPDE and $j=1,2, \ldots$, NXI.

11: $\mathrm{R}(\mathrm{NCODE})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Output
On exit: if NCODE $>0, \mathrm{R}(i)$ must contain the i th component of R, for $i=1,2, \ldots$, NCODE, where R is defined as

$$
\begin{equation*}
R=-B \dot{V}-C U_{t}^{*} \tag{13}
\end{equation*}
$$

i.e., only terms depending explicitly on time derivatives, or

$$
\begin{equation*}
R=A-B \dot{V}-C U_{t}^{*} \tag{14}
\end{equation*}
$$

i.e., all terms in equation (4). The definition of R is determined by the input value of IRES.

IRES - INTEGER
Input/Output
On entry: the form of R that must be returned in the array R .
IRES $=-1$
Equation (13) must be used.
IRES $=1$
Equation (14) must be used.
On exit: should usually remain unchanged. However, you may reset IRES to force the integration routine to take certain actions, as described below:
IRES $=2$
Indicates to the integrator that control should be passed back immediately to the calling (sub)routine with the error indicator set to $\operatorname{IFAIL}=6$.

IRES $=3$

Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set IRES $=3$ when a physically meaningless input or output value has been generated. If you consecutively set $\operatorname{IRES}=3$, then D03PRF returns to the calling subroutine with the error indicator set to $\mathrm{IFAIL}=4$.

ODEDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D03PRF is called. Parameters denoted as Input must not be changed by this procedure.

13: NXI - INTEGER
Input
On entry: the number of ODE/PDE coupling points.
Constraints:

$$
\begin{aligned}
& \text { if } \mathrm{NCODE}=0, \text { NXI }=0 \\
& \text { if } \mathrm{NCODE}>0, \mathrm{NXI} \geq 0
\end{aligned}
$$

14: $\quad \mathrm{XI}(*)$ - REAL (KIND=nag_wp) array
Input
Note: the dimension of the array XI must be at least $\max (1, \mathrm{NXI})$.
On entry: $\mathrm{XI}(i)$, for $i=1,2, \ldots, \mathrm{NXI}$, must be set to the ODE/PDE coupling points, ξ_{i}.
Constraint: $\mathrm{X}(1) \leq \mathrm{XI}(1)<\mathrm{XI}(2)<\cdots<\mathrm{XI}(\mathrm{NXI}) \leq \mathrm{X}($ NPTS $)$.
15: NEQN - INTEGER
Input
On entry: the number of ODEs in the time direction.
Constraint: $\mathrm{NEQN}=\mathrm{NPDE} \times \mathrm{NPTS}+\mathrm{NCODE}$.

16: $\operatorname{RTOL}(*)$ - REAL (KIND=nag_wp) array
Input
Note: the dimension of the array RTOL must be at least 1 if ITOL $=1$ or 2 and at least NEQN if ITOL $=3$ or 4 .

On entry: the relative local error tolerance.
Constraint: $\mathrm{RTOL}(i) \geq 0.0$ for all relevant i.
17: $\operatorname{ATOL}(*)-$ REAL (KIND=nag_wp) array
Input
Note: the dimension of the array ATOL must be at least 1 if ITOL $=1$ or 3 and at least NEQN if ITOL $=2$ or 4 .
On entry: the absolute local error tolerance.
Constraint: $\operatorname{ATOL}(i) \geq 0.0$ for all relevant i.
Note: corresponding elements of RTOL and ATOL cannot both be 0.0 .
18: ITOL - INTEGER
Input
A value to indicate the form of the local error test. ITOL indicates to D03PRF whether to interpret either or both of RTOL or ATOL as a vector or scalar. The error test to be satisfied is $\left\|e_{i} / w_{i}\right\|<1.0$, where w_{i} is defined as follows:
On entry:

ITOL	RTOL	ATOL	w_{i}
1	scalar	scalar	RTOL $(1) \times\|\mathrm{U}(i)\|+\operatorname{ATOL}(1)$
2	scalar	vector	$\operatorname{RTOL}(1) \times\|\mathrm{U}(i)\|+\operatorname{ATOL}(i)$
3	vector	scalar	$\operatorname{RTOL}(i) \times\|\mathrm{U}(i)\|+\operatorname{ATOL}(1)$
4	vector	vector	RTOL $(i) \times\|\mathrm{U}(i)\|+\operatorname{ATOL}(i)$

In the above, e_{i} denotes the estimated local error for the i th component of the coupled PDE/ODE system in time, $\mathrm{U}(i)$, for $i=1,2, \ldots, \mathrm{NEQN}$.
The choice of norm used is defined by the parameter NORM.
Constraint: $\mathrm{ITOL}=1,2,3$ or 4 .

19: NORM - CHARACTER(1)
Input
On entry: the type of norm to be used.
NORM = 'M'
Maximum norm.
NORM = 'A'
Averaged L_{2} norm.
If $U_{\text {norm }}$ denotes the norm of the vector U of length NEQN, then for the averaged L_{2} norm

$$
U_{\mathrm{norm}}=\sqrt{\frac{1}{\text { NEQN }} \sum_{i=1}^{\mathrm{NEQN}}\left(U(i) / w_{i}\right)^{2}},
$$

while for the maximum norm

$$
U_{\mathrm{norm}}=\max _{i}\left|\mathrm{U}(i) / w_{i}\right|
$$

See the description of ITOL for the formulation of the weight vector w.
Constraint: $\mathrm{NORM}=$ ' M^{\prime} or ' A '.

LAOPT - CHARACTER(1)
On entry: the type of matrix algebra required.
LAOPT $=$ ' ${ }^{\prime}$
Full matrix methods to be used.
LAOPT $=$ 'B'
Banded matrix methods to be used.
LAOPT = 'S'
Sparse matrix methods to be used.
Constraint: LAOPT $=$ ' F , ' B ' or ' S '.
Note: you are recommended to use the banded option when no coupled ODEs are present (i.e., $\mathrm{NCODE}=0)$.

ALGOPT(30) - REAL (KIND=nag_wp) array
Input
On entry: may be set to control various options available in the integrator. If you wish to employ all the default options, then ALGOPT(1) should be set to 0.0 . Default values will also be used for any other elements of ALGOPT set to zero. The permissible values, default values, and meanings are as follows:

ALGOPT(1)

Selects the ODE integration method to be used. If $\operatorname{ALGOPT}(1)=1.0$, a BDF method is used and if $\operatorname{ALGOPT}(1)=2.0$, a Theta method is used. The default value is $\operatorname{ALGOPT}(1)=1.0$.
If $\operatorname{ALGOPT}(1)=2.0$, then $\operatorname{ALGOPT}(i)$, for $i=2,3,4$, are not used.
ALGOPT(2)
Specifies the maximum order of the BDF integration formula to be used. ALGOPT(2) may be $1.0,2.0,3.0,4.0$ or 5.0. The default value is $\operatorname{ALGOPT}(2)=5.0$.
ALGOPT(3)
Specifies what method is to be used to solve the system of nonlinear equations arising on each step of the BDF method. If $\operatorname{ALGOPT}(3)=1.0$ a modified Newton iteration is used and if $\operatorname{ALGOPT}(3)=2.0$ a functional iteration method is used. If functional iteration is selected and the integrator encounters difficulty, then there is an automatic switch to the modified Newton iteration. The default value is $\operatorname{ALGOPT}(3)=1.0$.

ALGOPT(4)

Specifies whether or not the Petzold error test is to be employed. The Petzold error test results in extra overhead but is more suitable when algebraic equations are present, such as $P_{i, j}=0.0$, for $j=1,2, \ldots$, NPDE, for some i or when there is no $\dot{V}_{i}(t)$ dependence in the coupled ODE system. If $\operatorname{ALGOPT}(4)=1.0$, then the Petzold test is used. If $\operatorname{ALGOPT}(4)=2.0$, then the Petzold test is not used. The default value is $\operatorname{ALGOPT}(4)=1.0$.
If $\operatorname{ALGOPT}(1)=1.0$, then $\operatorname{ALGOPT}(i)$, for $i=5,6,7$, are not used.
ALGOPT(5)
Specifies the value of Theta to be used in the Theta integration method. $0.51 \leq \operatorname{ALGOPT}(5) \leq 0.99$. The default value is $\operatorname{ALGOPT}(5)=0.55$.
ALGOPT(6)
Specifies what method is to be used to solve the system of nonlinear equations arising on each step of the Theta method. If $\operatorname{ALGOPT}(6)=1.0$, a modified Newton iteration is used and if $\operatorname{ALGOPT}(6)=2.0$, a functional iteration method is used. The default value is $\operatorname{ALGOPT}(6)=1.0$.

ALGOPT(7)

Specifies whether or not the integrator is allowed to switch automatically between modified Newton and functional iteration methods in order to be more efficient. If
$\operatorname{ALGOPT}(7)=1.0$, then switching is allowed and if $\operatorname{ALGOPT}(7)=2.0$, then switching is not allowed. The default value is $\operatorname{ALGOPT}(7)=1.0$.

ALGOPT(11)

Specifies a point in the time direction, $t_{\text {crit }}$, beyond which integration must not be attempted. The use of $t_{\text {crit }}$ is described under the parameter ITASK. If $\operatorname{ALGOPT}(1) \neq 0.0, \mathrm{a}$ value of 0.0 , for $\operatorname{ALGOPT}(11)$, say, should be specified even if ITASK subsequently specifies that $t_{\text {crit }}$ will not be used.

ALGOPT(12)

Specifies the minimum absolute step size to be allowed in the time integration. If this option is not required, $\operatorname{ALGOPT}(12)$ should be set to 0.0 .

ALGOPT(13)

Specifies the maximum absolute step size to be allowed in the time integration. If this option is not required, $\operatorname{ALGOPT}(13)$ should be set to 0.0 .

ALGOPT(14)

Specifies the initial step size to be attempted by the integrator. If $\operatorname{ALGOPT}(14)=0.0$, then the initial step size is calculated internally.

ALGOPT(15)

Specifies the maximum number of steps to be attempted by the integrator in any one call. If $\operatorname{ALGOPT}(15)=0.0$, then no limit is imposed.

ALGOPT(23)

Specifies what method is to be used to solve the nonlinear equations at the initial point to initialize the values of U, U_{t}, V and \dot{V}. If $\operatorname{ALGOPT}(23)=1.0$, a modified Newton iteration is used and if $\operatorname{ALGOPT}(23)=2.0$, functional iteration is used. The default value is $\operatorname{ALGOPT}(23)=1.0$.
$\operatorname{ALGOPT}(29)$ and $\operatorname{ALGOPT}(30)$ are used only for the sparse matrix algebra option, i.e., LAOPT $=$ 'S'.

ALGOPT(29)

Governs the choice of pivots during the decomposition of the first Jacobian matrix. It should lie in the range $0.0<\operatorname{ALGOPT}(29)<1.0$, with smaller values biasing the algorithm towards maintaining sparsity at the expense of numerical stability. If ALGOPT(29) lies outside this range then the default value is used. If the routines regard the Jacobian matrix as numerically singular then increasing ALGOPT(29) towards 1.0 may help, but at the cost of increased fill-in. The default value is $\operatorname{ALGOPT}(29)=0.1$.

ALGOPT(30)

Used as a relative pivot threshold during subsequent Jacobian decompositions (see ALGOPT(29)) below which an internal error is invoked. ALGOPT(30) must be greater than zero, otherwise the default value is used. If $\operatorname{ALGOPT}(30)$ is greater than 1.0 no check is made on the pivot size, and this may be a necessary option if the Jacobian is found to be numerically singular (see ALGOPT(29)). The default value is $\operatorname{ALGOPT}(30)=0.0001$.

REMESH - LOGICAL
Input
On entry: indicates whether or not spatial remeshing should be performed.
REMESH = .TRUE.
Indicates that spatial remeshing should be performed as specified.
REMESH $=$. FALSE.
Indicates that spatial remeshing should be suppressed.
Note: REMESH should not be changed between consecutive calls to D03PRF. Remeshing can be switched off or on at specified times by using appropriate values for the parameters NRMESH and TRMESH at each call.

NXFIX - INTEGER
On entry: the number of fixed mesh points.
Constraint: $0 \leq$ NXFIX \leq NPTS -2 .
Note: the end points $X(1)$ and $X($ NPTS $)$ are fixed automatically and hence should not be specified as fixed points.

24: $\operatorname{XFIX}(*)$ - REAL (KIND=nag_wp) array Input
Note: the dimension of the array XFIX must be at least max (1, NXFIX).
On entry: XFIX (i), for $i=1,2, \ldots$, NXFIX, must contain the value of the x coordinate at the i th fixed mesh point.

Constraint: XFIX $(i)<\operatorname{XFIX}(i+1)$, for $i=1,2, \ldots$, NXFIX -1 , and each fixed mesh point must coincide with a user-supplied initial mesh point, that is $\operatorname{XFIX}(i)=\mathrm{X}(j)$ for some j, $2 \leq j \leq$ NPTS -1 .
Note: the positions of the fixed mesh points in the array X remain fixed during remeshing, and so the number of mesh points between adjacent fixed points (or between fixed points and end points) does not change. You should take this into account when choosing the initial mesh distribution.

25: NRMESH - INTEGER
Input
On entry: indicates the form of meshing to be performed.
NRMESH <0
Indicates that a new mesh is adopted according to the parameter DXMESH. The mesh is tested every |NRMESH| timesteps.
NRMESH $=0$
Indicates that remeshing should take place just once at the end of the first time step reached when $t>$ TRMESH.

NRMESH > 0
Indicates that remeshing will take place every NRMESH time steps, with no testing using DXMESH.

Note: NRMESH may be changed between consecutive calls to D03PRF to give greater flexibility over the times of remeshing.

DXMESH - REAL (KIND=nag_wp)
Input
On entry: determines whether a new mesh is adopted when NRMESH is set less than zero. A possible new mesh is calculated at the end of every |NRMESH| time steps, but is adopted only if

$$
x_{i}^{\text {new }}>x_{i}^{\text {old }}+\text { DXMESH } \times\left(x_{i+1}^{\text {old }}-x_{i}^{\text {old }}\right)
$$

or

$$
x_{i}^{\text {new }}<x_{i}^{\text {old }}-\text { DXMESH } \times\left(x_{i}^{\text {old }}-x_{i-1}^{\text {old }}\right)
$$

DXMESH thus imposes a lower limit on the difference between one mesh and the next.
Constraint: DXMESH ≥ 0.0.
27: \quad TRMESH - REAL (KIND=nag_wp)
Input
On entry: specifies when remeshing will take place when NRMESH is set to zero. Remeshing will occur just once at the end of the first time step reached when t is greater than TRMESH.
Note: TRMESH may be changed between consecutive calls to D03PRF to force remeshing at several specified times.

IPMINF - INTEGER
Input
On entry: the level of trace information regarding the adaptive remeshing. Details are directed to the current advisory message unit (see X04ABF).
IPMINF $=0$ No trace information.

IPMINF $=1$
Brief summary of mesh characteristics.
IPMINF $=2$
More detailed information, including old and new mesh points, mesh sizes and monitor function values.

Constraint: $\mathrm{IPMINF}=0,1$ or 2.

29: XRATIO - REAL (KIND=nag_wp)
Input
On entry: input bound on adjacent mesh ratio (greater than 1.0 and typically in the range 1.5 to 3.0). The remeshing routines will attempt to ensure that

$$
\left(x_{i}-x_{i-1}\right) / \text { XRATIO }<x_{i+1}-x_{i}<\text { XRATIO } \times\left(x_{i}-x_{i-1}\right)
$$

Suggested value: XRATIO $=1.5$.
Constraint: XRATIO > 1.0.
CON - REAL (KIND=nag_wp)
Input
On entry: an input bound on the sub-integral of the monitor function $F^{\text {mon }}(x)$ over each space step. The remeshing routines will attempt to ensure that

$$
\int_{x_{1}}^{x_{i+1}} F^{\mathrm{mon}}(x) d x \leq \mathrm{CON} \int_{x_{1}}^{x_{\mathrm{NPTS}}} F^{\mathrm{mon}}(x) d x
$$

(see Furzeland (1984)). CON gives you more control over the mesh distribution e.g., decreasing CON allows more clustering. A typical value is $2 /(\mathrm{NPTS}-1)$, but you are encouraged to experiment with different values. Its value is not critical and the mesh should be qualitatively correct for all values in the range given below.

Suggested value: CON $=2.0 /(\mathrm{NPTS}-1)$.
Constraint: $0.1 /(\mathrm{NPTS}-1) \leq \mathrm{CON} \leq 10.0 /(\mathrm{NPTS}-1)$.
31: MONITF - SUBROUTINE, supplied by the NAG Library or the user. External Procedure
MONITF must supply and evaluate a remesh monitor function to indicate the solution behaviour of interest.

If you specify REMESH $=$.FALSE., i.e., no remeshing, then MONITF will not be called and the dummy routine D03PEL may be used for MONITF. (D03PEL is included in the NAG Library.)

```
The specification of MONITF is:
SUBROUTINE MONITF (T, NPTS, NPDE, X, U, FMON)
INTEGER NPTS, NPDE
REAL (KIND=nag_wp) T, X(NPTS), U(NPDE,NPTS), FMON(NPTS)
1: T - REAL (KIND=nag_wp) Input
    On entry: the current value of the independent variable t.
2: NPTS - INTEGER Input
    On entry: the number of mesh points in the interval [a,b].
```

3: NPDE - INTEGER
On entry: the number of PDEs in the system.
 Input

On entry: the current mesh. $\mathrm{X}(i)$ contains the value of x_{i}, for $i=1,2, \ldots$, NPTS.
5: $\quad \mathrm{U}(\mathrm{NPDE}, \mathrm{NPTS})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input
On entry: $\mathrm{U}(i, j)$ contains the value of $U_{i}(x, t)$ at $x=\mathrm{X}(j)$ and time t, for $i=1,2, \ldots$, NPDE and $j=1,2, \ldots$, NPTS.

FMON(NPTS) - REAL (KIND=nag_wp) array
Output
On exit: $\mathrm{FMON}(i)$ must contain the value of the monitor function $F^{\text {mon }}(x)$ at mesh point $x=\mathrm{X}(i)$.
Constraint: $\operatorname{FMON}(i) \geq 0.0$.
MONITF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D03PRF is called. Parameters denoted as Input must not be changed by this procedure.

RSAVE(LRSAVE) - REAL (KIND=nag_wp) array
Communication Array
If IND $=0$, RSAVE need not be set on entry.
If IND $=1$, RSAVE must be unchanged from the previous call to the routine because it contains required information about the iteration.

LRSAVE - INTEGER
Input
On entry: the dimension of the array RSAVE as declared in the (sub)program from which D03PRF is called. Its size depends on the type of matrix algebra selected.
If LAOPT $=$ ' F ', LRSAVE \geq NEQN \times NEQN + NEQN + nwkres + lenode.
If LAOPT $=$ 'B', LRSAVE $\geq(3 \times m l+m u+2) \times$ NEQN $+n w k r e s+l e n o d e$.
If LAOPT $=$ 'S', LRSAVE $\geq 4 \times$ NEQN $+11 \times$ NEQN $/ 2+1+$ nwkres + lenode .
Where
$m l$ and $m u$ are the lower and upper half bandwidths given by $m l=$ NPDE + NLEFT -1 such that $m u=2 \times$ NPDE - NLEFT -1 , for problems involving PDEs only; or $m l=m u=$ NEQN -1 , for coupled PDE/ODE problems.
$n w k r e s= \begin{cases}\text { NPDE } \times(3 \times \text { NPDE }+6 \times \text { NXI }+ \text { NPTS }+15)+\text { NXI }+ \text { NCODE }+7 \times \text { NPTS }+ \text { NXFIX }+1, & \text { when NCODE }>0 \text { and NXI }>0 ; \text { or } \\ \text { NPDE } \times(3 \times \text { NPDE }+ \text { NPTS }+21)+\text { NCODE }+7 \times \text { NPTS }+ \text { NXFIX }+2, & \text { when NCODE }>0 \text { and NXI }=0 ; \text { or }\end{cases}$ $\begin{cases}\text { NPDE } \times(3 \times \text { NPDE }+ \text { NPTS }+21)+\text { NCODE }+7 \times \text { NPTS }+ \text { NXFIX }+2, & \text { when NCODE }>0 \\ \text { NPDE } \times(3 \times \text { NPDE }+ \text { NPTS }+21)+7 \times \text { NPTS }+ \text { NXFIX }+3, & \text { when NCODE }=0 .\end{cases}$
lenode $= \begin{cases}(6+\operatorname{int}(\operatorname{ALGOPT}(2))) \times \mathrm{NEQN}+50, & \text { when the BDF method is used; or } \\ 9 \times \mathrm{NEQN}+50, & \text { when the Theta method is used. }\end{cases}$
Note: when using the sparse option, the value of LRSAVE may be too small when supplied to the integrator. An estimate of the minimum size of LRSAVE is printed on the current error message unit if ITRACE >0 and the routine returns with IFAIL $=15$.

34: ISAVE(LISAVE) - INTEGER array
Communication Array
If $\operatorname{IND}=0$, ISAVE need not be set.

If IND $=1$, ISAVE must be unchanged from the previous call to the routine because it contains required information about the iteration. In particular the following components of the array ISAVE concern the efficiency of the integration:
ISAVE(1)
Contains the number of steps taken in time.
ISAVE(2)
Contains the number of residual evaluations of the resulting ODE system used. One such evaluation involves evaluating the PDE functions at all the mesh points, as well as one evaluation of the functions in the boundary conditions.
ISAVE(3)
Contains the number of Jacobian evaluations performed by the time integrator.
ISAVE(4)
Contains the order of the ODE method last used in the time integration.
ISAVE(5)
Contains the number of Newton iterations performed by the time integrator. Each iteration involves residual evaluation of the resulting ODE system followed by a back-substitution using the $L U$ decomposition of the Jacobian matrix.
The rest of the array is used as workspace.
LISAVE - INTEGER
On entry: the dimension of the array ISAVE as declared in the (sub)program from which D03PRF is called. Its size depends on the type of matrix algebra selected:

$$
\begin{aligned}
& \text { if LAOPT }=\text { ' }{ }^{\prime} \text { ', LISAVE } \geq 25+\text { NXFIX; } \\
& \text { if LAOPT }=\text { 'B', LISAVE } \geq \text { NEQN }+25+\text { NXFIX; } \\
& \text { if LAOPT }=\text { 'S', LISAVE } \geq 25 \times \text { NEQN }+25+\text { NXFIX. }
\end{aligned}
$$

Note: when using the sparse option, the value of LISAVE may be too small when supplied to the integrator. An estimate of the minimum size of LISAVE is printed on the current error message unit if ITRACE >0 and the routine returns with IFAIL $=15$.

ITASK - INTEGER
Input
On entry: the task to be performed by the ODE integrator.
ITASK $=1$
Normal computation of output values U at $t=$ TOUT (by overshooting and interpolating).
ITASK $=2$
Take one step in the time direction and return.

ITASK $=3$

Stop at first internal integration point at or beyond $t=$ TOUT.
ITASK $=4$
Normal computation of output values U at $t=$ TOUT but without overshooting $t=t_{\text {crit }}$ where $t_{\text {crit }}$ is described under the parameter ALGOPT.
ITASK $=5$
Take one step in the time direction and return, without passing $t_{\text {crit }}$, where $t_{\text {crit }}$ is described under the parameter ALGOPT.

Constraint: ITASK $=1,2,3,4$ or 5 .

ITRACE - INTEGER
Input
On entry: the level of trace information required from D03PRF and the underlying ODE solver as follows:
ITRACE ≤-1
No output is generated.
ITRACE $=0$
Only warning messages from the PDE solver are printed on the current error message unit (see X04AAF).
ITRACE $=1$
Output from the underlying ODE solver is printed on the current advisory message unit (see X04ABF). This output contains details of Jacobian entries, the nonlinear iteration and the time integration during the computation of the ODE system.
ITRACE $=2$
Output from the underlying ODE solver is similar to that produced when ITRACE $=1$, except that the advisory messages are given in greater detail.
ITRACE ≥ 3
The output from the underlying ODE solver is similar to that produced when ITRACE $=2$, except that the advisory messages are given in greater detail.
You are advised to set ITRACE $=0$, unless you are experienced with sub-chapter D02M-N.
IND - INTEGER
Input/Output
On entry: indicates whether this is a continuation call or a new integration.
$\mathrm{IND}=0$
Starts or restarts the integration in time.
$\mathrm{IND}=1$
Continues the integration after an earlier exit from the routine. In this case, only the parameters TOUT and IFAIL and the remeshing parameters NRMESH, DXMESH, TRMESH, XRATIO and CON may be reset between calls to D03PRF.
Constraint: IND $=0$ or 1 .
On exit: $\mathrm{IND}=1$.

39: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, (TOUT - TS) is too small,
or $\quad \operatorname{ITASK} \neq 1,2,3,4$ or 5 ,
or at least one of the coupling points defined in array XI is outside the interval [X(1), X(NPTS)],
or \quad NPTS <3,
or $\quad \mathrm{NPDE}<1$,
or NLEFT not in the range 0 to NPDE,
or \quad NORM \neq ' A^{\prime} ' or ' M^{\prime},
or LAOPT \neq ' F^{\prime}, 'B' or 'S',
or \quad ITOL $\neq 1,2,3$ or 4 ,
or \quad IND $\neq 0$ or 1 ,
or mesh points $\mathrm{X}(i)$ are badly ordered,
or LRSAVE is too small,
or LISAVE is too small,
or NCODE and NXI are incorrectly defined,
or $\quad \mathrm{IND}=1$ on initial entry to D03PRF,
or an element of RTOL or ATOL <0.0,
or corresponding elements of RTOL and ATOL are both 0.0 ,
or \quad NEQN \neq NPDE \times NPTS + NCODE,
or NXFIX not in the range 0 to NPTS - 2,
or fixed mesh point(s) do not coincide with any of the user-supplied mesh points,
or \quad DXMESH <0.0,
or \quad IPMINF $\neq 0,1$ or 2 ,
or \quad XRATIO ≤ 1.0,
or \quad CON not in the range $0.1 /(\mathrm{NPTS}-1)$ to $10 /(\mathrm{NPTS}-1)$.
IFAIL $=2$
The underlying ODE solver cannot make any further progress, with the values of ATOL and RTOL, across the integration range from the current point $t=\mathrm{TS}$. The components of U contain the computed values at the current point $t=\mathrm{TS}$.

IFAIL $=3$
In the underlying ODE solver, there were repeated error test failures on an attempted step, before completing the requested task, but the integration was successful as far as $t=$ TS. The problem may have a singularity, or the error requirement may be inappropriate. Incorrect positioning of boundary conditions may also result in this error.

IFAIL $=4$
In setting up the ODE system, the internal initialization routine was unable to initialize the derivative of the ODE system. This could be due to the fact that IRES was repeatedly set to 3 in one of PDEDEF, BNDARY or ODEDEF, when the residual in the underlying ODE solver was being evaluated. Incorrect positioning of boundary conditions may also result in this error.

IFAIL $=5$

In solving the ODE system, a singular Jacobian has been encountered. You should check their problem formulation.

IFAIL $=6$
When evaluating the residual in solving the ODE system, IRES was set to 2 in one of PDEDEF, BNDARY or ODEDEF. Integration was successful as far as $t=\mathrm{TS}$.

IFAIL $=7$
The values of ATOL and RTOL are so small that the routine is unable to start the integration in time.

IFAIL $=8$
In either, PDEDEF, BNDARY or ODEDEF, IRES was set to an invalid value.
IFAIL $=9(\mathrm{D} 02 \mathrm{NNF})$
A serious error has occurred in an internal call to the specified routine. Check the problem specification an all parameters and array dimensions. Setting ITRACE $=1$ may provide more information. If the problem persists, contact NAG.

IFAIL $=10$
The required task has been completed, but it is estimated that a small change in ATOL and RTOL is unlikely to produce any change in the computed solution. (Only applies when you are not operating in one step mode, that is when ITASK $\neq 2$ or 5 .)

IFAIL $=11$
An error occurred during Jacobian formulation of the ODE system (a more detailed error description may be directed to the current advisory message unit). If using the sparse matrix algebra option, the values of $\operatorname{ALGOPT}(29)$ and $\operatorname{ALGOPT}(30)$ may be inappropriate.

IFAIL $=12$
In solving the ODE system, the maximum number of steps specified in ALGOPT(15) have been taken.

IFAIL $=13$
Some error weights w_{i} became zero during the time integration (see the description of ITOL). Pure relative error control ($\mathrm{ATOL}(i)=0.0$) was requested on a variable (the i th) which has become zero. The integration was successful as far as $t=$ TS.

IFAIL $=14$
Not applicable.
IFAIL $=15$
When using the sparse option, the value of LISAVE or LRSAVE was insufficient (more detailed information may be directed to the current error message unit).

IFAIL $=16$
REMESH has been changed between calls to D03PRF.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.

IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

D03PRF controls the accuracy of the integration in the time direction but not the accuracy of the approximation in space. The spatial accuracy depends on both the number of mesh points and on their distribution in space. In the time integration only the local error over a single step is controlled and so the accuracy over a number of steps cannot be guaranteed. You should therefore test the effect of varying the accuracy parameters, ATOL and RTOL.

8 Parallelism and Performance

D03PRF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

D03PRF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The Keller box scheme can be used to solve higher-order problems which have been reduced to firstorder by the introduction of new variables (see the example in Section 10). In general, a second-order problem can be solved with slightly greater accuracy using the Keller box scheme instead of a finite difference scheme (D03PPF/D03PPA for example), but at the expense of increased CPU time due to the larger number of function evaluations required.

It should be noted that the Keller box scheme, in common with other central-difference schemes, may be unsuitable for some hyperbolic first-order problems such as the apparently simple linear advection equation $U_{t}+a U_{x}=0$, where a is a constant, resulting in spurious oscillations due to the lack of dissipation. This type of problem requires a discretization scheme with upwind weighting (D03PSF for example), or the addition of a second-order artificial dissipation term.
The time taken depends on the complexity of the system, the accuracy requested, and the frequency of the mesh updates. For a given system with fixed accuracy and mesh-update frequency it is approximately proportional to NEQN.

10 Example

This example is the first-order system

$$
\begin{aligned}
& \frac{\partial U_{1}}{\partial t}+\frac{\partial U_{1}}{\partial x}+\frac{\partial U_{2}}{\partial x}=0 \\
& \frac{\partial U_{2}}{\partial t}+4 \frac{\partial U_{1}}{\partial x}+\frac{\partial U_{2}}{\partial x}=0
\end{aligned}
$$

for $x \in[0,1]$ and $t \geq 0$.

The initial conditions are

$$
\begin{aligned}
U_{1}(x, 0) & =e^{x} \\
U_{2}(x, 0) & =x^{2}+\sin \left(2 \pi x^{2}\right)
\end{aligned}
$$

and the Dirichlet boundary conditions for U_{1} at $x=0$ and U_{2} at $x=1$ are given by the exact solution:

$$
\begin{aligned}
& U_{1}(x, t)=\frac{1}{2}\left\{e^{x+t}+e^{x-3 t}\right\}+\frac{1}{4}\left\{\sin \left(2 \pi(x-3 t)^{2}\right)-\sin \left(2 \pi(x+t)^{2}\right)\right\}+2 t^{2}-2 x t \\
& U_{2}(x, t)=e^{x-3 t}-e^{x+t}+\frac{1}{2}\left\{\sin \left(2 \pi(x-3 t)^{2}\right)+\sin \left(2 \pi(x+t)^{2}\right)\right\}+x^{2}+5 t^{2}-2 x t
\end{aligned}
$$

10.1 Program Text

D03PRF Example Program Text
Mark 25 Release. NAG Copyright 2014.
Module d03prfe_mod
D03PRF Example Program Module: Parameters and User-defined Routines
.. Use Statements ..
Use nag_library, Only: nag_wp
.. Implicit None Statement ..
Implicit None
.. Accessibility Statements ..
Private
Public
.. Parameters ..
Real (Kind=nag_wp), Parameter : half = 0.5_nag_wp
Real (Kind=nag_wp), Parameter : two = 2.0_nag_wp
Integer, Parameter, Public $\quad:$ itrace $=0, \operatorname{ncode}=0, \operatorname{nin}=5, \&$ nleft $=1$, nout $=6$, npde $=2$, \& nxfix $=0, n x i=0$
Contains
Subroutine uvinit(npde, npts,nxi,x,xi,u,ncode,v)
! .. Use Statements ..
Use nag_library, Only: x0laaf
.. Scalar Arguments ..
Integer, Intent (In) : ncode, npde, npts, nxi
.. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) : u(npde,npts), v(ncode)
Real (Kind=nag_wp), Intent (In) : x (npts), xi(nxi)
.. Local Scalars ..
Real (Kind=nag_wp) : : pi
Integer :: i
. Intrinsic Procedures ..
Intrinsic : : exp, sin
.. Executable Statements ..
pi = xOlaaf(pi)
Do $i=1$, npts
$u(1, i)=\exp (x(i))$
$u(2, i)=x(i) * * 2+\sin (t w o * p i * x(i) * * 2)$
End Do
Return
End Subroutine uvinit
Subroutine pdedef(npde,t,x,u,udot,ux, ncode, v, vdot,res,ires)
! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) : t, x
Integer, Intent (Inout) : ires
Integer, Intent (In) : ncode, npde
! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) : res(npde)
Real (Kind=nag_wp), Intent (In) : : u(npde), udot(npde), ux(npde), \&
v(ncode), vdot(ncode)

```
!
!
!
!
!
!
!
!
    .. Executable Statements ..
    If (ires==-1) Then
    res(1) = udot(1)
    res(2) = udot(2)
    Else
    res(1) = udot(1) +ux(1) + ux(2)
    res(2) = udot(2) + 4.0_nag_wp*ux(1) + ux(2)
    End If
    Return
End Subroutine pdedef
Subroutine bndary(npde,t,ibnd,nobc,u,udot,ncode,v,vdot,res,ires)
    .. Use Statements ..
    Use nag_library, Only: x0laaf
    .. Scalar Arguments ..
    Real (Kind=nag_wp), Intent (In) :: t
    Integer, Intent (In) :: ibnd, ncode, nobc, npde
    Integer, Intent (Inout) :: ires
    .. Array Arguments ..
    Real (Kind=nag_wp), Intent (Out) :: res(nobc)
    Real (Kind=nag_wp), Intent (In) :: u(npde), udot(npde), v(ncode), &
    .. Local Scalars ..
    Real (Kind=nag_wp) :: pp, ppt1, ppt3, t1, t3
    .. Intrinsic Procedures ..
    Intrinsic :: exp, sin
    .. Executable Statements ..
    If (ires==-1) Then
        res(1) = 0.0_nag_wp
    Else
        pp = two*x01aaf(pp)
        t1 = t
        t3 = -3.0_nag_wp*t
        If (ibnd==0) Then
            ppt3= sin(pp*t3**2)
            ppt1 = sin(pp*t1**2)
            res(1) = u(1) - half*(exp(t3)+exp(t1)+half*(ppt3-ppt1))
            res(1) = res(1) - 2.0_nag_wp*t**2
        Else
            t3 = t3 + 1.0_nag_wp
            t1 = t1 + 1.0_nag_wp
            ppt3 = sin(pp*t3**2)
            ppt1 = sin(pp*t1**2)
            res(1) = u(2) - (exp(t3)-exp(t1)+half*(ppt3+ppt1))
            res(1) = res(1) - (1.0_nag_wp+5.0_nag_wp*t**2-2.0_nag_wp*t)
        End If
    End If
    Return
    End Subroutine bndary
    Subroutine monitf(t,npts,npde,x,u,fmon)
    .. Scalar Arguments ..
    Real (Kind=nag_wp), Intent (In) :: t
    Integer, Intent (In) :: npde, npts
    .. Array Arguments ..
    Real (Kind=nag_wp), Intent (Out) :: fmon(npts)
    Real (Kind=nag_wp), Intent (In) :: u(npde,npts), x(npts)
    .. Local Scalars ..
    Real (Kind=nag_wp)
    Integer :: i
    .. Intrinsic Procedures ..
    Intrinsic :: abs, max
    .. Executable Statements ..
    Do i = 2, npts - 1
        h1 = x(i) - x(i-1)
        h2 = x(i+1) - x(i)
        h3 = half*(x(i+1)-x(i-1))
    Second derivatives ..
    d2x1 = abs(((u(1,i+1)-u(1,i))/h2-(u(1,i)-u(1,i-1))/h1)/h3)
    d2x2 = abs(((u(2,i+1)-u(2,i))/h2-(u(2,i)-u(2,i-1))/h1)/h3)
    fmon(i) = max(d2x1,d2x2)
```

```
    End Do
    fmon(1) = fmon(2)
    fmon(npts) = fmon(npts-1)
    Return
    End Subroutine monitf
    Subroutine exact(t,npde,npts,x,u)
    Exact solution (for comparison purposes)
    .. Use Statements ..
    Use nag_library, Only: xOlaaf
    .. Scalar Arguments ..
    Real (Kind=nag_wp), Intent (In) :: t
    Integer, Intent (In) :: npde, npts
    .. Array Arguments ..
    Real (Kind=nag_wp), Intent (Out) :: u(npde,npts)
    Real (Kind=nag_wp), Intent (In) :: x(npts)
    .. Local Scalars ..
    Real (Kind=nag_wp) :: pp, ppt1, ppt3, x1, x3
    Integer :: i
    .. Intrinsic Procedures ..
    Intrinsic :: exp, sin
    .. Executable Statements ..
    pp = 2.0_nag_wp*x01aaf(pp)
    Do i = 1, npts
    x1 = x(i) + t
    x3 = x(i) - 3.0_nag_wp*t
    ppt3 = sin(pp*x3**2)
    ppt1 = sin(pp*x1**2)
    u(1,i) = half*(exp(x3)+exp(x1)+half*(ppt3-ppt1)) - two*x(i)*t + &
        two*t**2
    u(2,i) = (exp(x3)-exp(xl)+half*(ppt3+ppt1)) - two*x(i)*t + x(i)**2 + &
        5.0_nag_wp*t**2
    End Do
    Return
    End Subroutine exact
    End Module dO3prfe_mod
    Program dO3prfe
    DO3PRF Example Main Program
    .. Use Statements ..
    Use nag_library, Only: d03pek, d03prf, d03pzf, nag_wp
    Use dO3prfe_mod, Only: bndary, exact, itrace, monitf, ncode, nin, nleft, &
                nout, npde, nxfix, nxi, pdedef, uvinit
    .. Implicit None Statement ..
    Implicit None
    .. Local Scalars ..
    Real (Kind=nag_wp) :: con, dxmesh, tout, trmesh, ts, &
    xratio
    Integer
    Logical
    Character (1)
    .. Local Arrays ..
    Real (Kind=nag_wp)
    Real (Kind=nag_wp), Allocatable
    Integer, Allocatable
    .. Intrinsic Procedures ..
    Intrinsic :: real
    .. Executable Statements ..
    Write (nout,*) 'DO3PRF Example Program Results'
    Skip heading in data file
    Read (nin,*)
    Read (nin,*) npts, intpts, itype
    lisave = 25 + nxfix
    neqn = npde*npts + ncode
```

```
    nwkres = npde*(npts+21+3*npde) + 7*npts + nxfix + 3
    lenode = 11*neqn + 50
    lrsave = neqn*neqn + neqn + nwkres + lenode
    Allocate (rsave(lrsave),u(npde,npts),ue(npde,npts), &
        uout(npde,intpts,itype),x(npts), xout(intpts),isave(lisave))
    Read (nin,*) itol
    Read (nin,*) atol(1), rtol(1)
    Set remesh parameters
    remesh = .True.
    nrmesh = 3
    dxmesh = 0.0_nag__wp
    con = 5.0_nag_wp/real(npts-1,kind=nag_wp)
    xratio = 1.2_nag_wp
    ipminf = O
    Initialise mesh
    Do i = 1, npts
        x(i) = real(i-1,kind=nag_wp)/real(npts-1,kind=nag_wp)
    End Do
    xi(1) = O.0_nag_wp
    Read (nin,*) xout(1:intpts)
    Read (nin,*) norm, laopt
    ind = 0
    itask = 1
    Set theta to.TRUE. if the Theta integrator is required
    theta = .False.
    algopt(1:30) = 0.0_nag_wp
    If (theta) Then
    algopt(1) = 2.0_nag_wp
    algopt(6) = 2.0_nag_wp
    algopt(7) = 1.0_nag_wp
End If
    Loop over output value of t
    ts = 0.0_nag_wp
    tout = 0.0_nag_wp
    Do it = 1, 5
    tout = 0.05_nag_wp*real(it,kind=nag_wp)
    ifail: behaviour on error exit
                =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
    ifail = 0
    Call d03prf(npde,ts,tout,pdedef,bndary,uvinit,u,npts,x,nleft,ncode, &
        d03pek,nxi,xi,neqn,rtol,atol,itol,norm,laopt,algopt,remesh,nxfix, &
        xfix,nrmesh,dxmesh,trmesh,ipminf,xratio,con,monitf,rsave,lrsave, &
        isave,lisave,itask,itrace,ind,ifail)
    If (it==1) Then
        Write (nout,99996) atol, npts
        Write (nout,99999) nrmesh
        Write (nout,99998) xout(1:intpts)
    End If
    Interpolate at output points ..
    ifail = 0
    Call d03pzf(npde,0,u,npts,x,xout,intpts,itype,uout,ifail)
    Check against exact solution ..
    Call exact(ts,npde,intpts,xout,ue)
    Write (nout,99997) ts
    Write (nout,99994) uout(1,1:intpts,1)
    Write (nout,99993) ue(1,1:intpts)
    Write (nout,99992) uout(2,1:intpts,1)
    Write (nout,99991) ue(2,1:intpts)
```

End Do
Write (nout,99995) isave(1), isave(2), isave(3), isave(5)

99999 Format (' Remeshing every ',I3,' time steps'/)
99998 Format (' X ',5F10.4/)
99997 Format (' $T=$ ',F6.3)
99996 Format (//' Accuracy requirement $=$ ',E10.3,' Number of points $=$ ',I3/)
99995 Format (' Number of integration steps in time $=$ ',I6/' Number o', \&
'f function evaluations $=$ ',I6/' Number of Jacobian eval','uations =', \&
I6/' Number of iterations = ',I6)
99994 Format ('Approx U1',5F10.4)
99993 Format (' Exact U1',5F10.4)
99992 Format (' Approx U2',5F10.4)
99991 Format (' Exact U2',5F10.4/)
End Program do3prfe

10.2 Program Data

```
DO3PRF Example Program Data
    6 1 5 1 : ~ n p t s , ~ i n t p t s , ~ i t y p e
1 : itol
0.5E-4 0.5E-4 : atol(1), rtol(1)
0.0 0.25 0.5 0.75 1.0 : xout(1:intpts)
A F : norm, laopt
```


10.3 Program Results

D03PRF Example Program Results

Accuracy requirement $=0.500 \mathrm{E}-04$ Number of points $=61$
Remeshing every 3 time steps

Example Program

Solution of First-order System using Moving Mesh $U(1, x, t)$

Solution of First-order System using Moving Mesh $U(2, x, t)$

