NAG Library Routine Document
 D02RAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

D02RAF solves a two-point boundary value problem with general boundary conditions for a system of ordinary differential equations, using a deferred correction technique and Newton iteration.

2 Specification

```
SUBROUTINE DO2RAF (N, MNP, NP, NUMBEG, NUMMIX, TOL, INIT, X, Y, LDY, &
    ABT, FCN, G, IJAC, JACOBF, JACOBG, DELEPS, JACEPS, &
    JACGEP, WORK, LWORK, IWORK, LIWORK, IFAIL)
INTEGER N, MNP, NP, NUMBEG, NUMMIX, INIT, LDY, IJAC, LWORK, &
    IWORK(LIWORK), LIWORK, IFAIL
REAL (KIND=nag_wp) TOL, X(MNP), Y(LDY,MNP), ABT(N), DELEPS, &
EXTERNAL FCN, G, JACOBF, JACOBG, JACEPS, JACGEP
```


3 Description

D02RAF solves a two-point boundary value problem for a system of n ordinary differential equations in the interval $[a, b]$ with $b>a$. The system is written in the form

$$
\begin{equation*}
y_{i}^{\prime}=f_{i}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right), \quad i=1,2, \ldots, n \tag{1}
\end{equation*}
$$

and the derivatives f_{i} are evaluated by FCN. With the differential equations (1) must be given a system of n (nonlinear) boundary conditions

$$
g_{i}(y(a), y(b))=0, \quad i=1,2, \ldots, n
$$

where

$$
\begin{equation*}
y(x)=\left[y_{1}(x), y_{2}(x), \ldots, y_{n}(x)\right]^{\mathrm{T}} \tag{2}
\end{equation*}
$$

The functions g_{i} are evaluated by G. The solution is computed using a finite difference technique with deferred correction allied to a Newton iteration to solve the finite difference equations. The technique used is described fully in Pereyra (1979).
You must supply an absolute error tolerance and may also supply an initial mesh for the finite difference equations and an initial approximate solution (alternatively a default mesh and approximation are used). The approximate solution is corrected using Newton iteration and deferred correction. Then, additional points are added to the mesh and the solution is recomputed with the aim of making the error everywhere less than your tolerance and of approximately equidistributing the error on the final mesh. The solution is returned on this final mesh.

If the solution is required at a few specific points then these should be included in the initial mesh. If, on the other hand, the solution is required at several specific points then you should use the interpolation routines provided in Chapter E01 if these points do not themselves form a convenient mesh.
The Newton iteration requires Jacobian matrices

$$
\left(\frac{\partial f_{i}}{\partial y_{j}}\right),\left(\frac{\partial g_{i}}{\partial y_{j}(a)}\right) \quad \text { and } \quad\left(\frac{\partial g_{i}}{\partial y_{j}(b)}\right)
$$

These may be supplied through JACOBF for $\left(\frac{\partial f_{i}}{\partial y_{j}}\right)$ and JACOBG for the others. Alternatively the Jacobians may be calculated by numerical differentiation using the algorithm described in Curtis et al. (1974).

For problems of the type (1) and (2) for which it is difficult to determine an initial approximation from which the Newton iteration will converge, a continuation facility is provided. You must set up a family of problems

$$
\begin{equation*}
y^{\prime}=f(x, y, \epsilon), \quad g(y(a), y(b), \epsilon)=0 \tag{3}
\end{equation*}
$$

where $f=\left[f_{1}, f_{2}, \ldots, f_{n}\right]^{\mathrm{T}}$ etc., and where ϵ is a continuation parameter. The choice $\epsilon=0$ must give a problem (3) which is easy to solve and $\epsilon=1$ must define the problem whose solution is actually required. The routine solves a sequence of problems with ϵ values

$$
\begin{equation*}
0=\epsilon_{1}<\epsilon_{2}<\cdots<\epsilon_{p}=1 \tag{4}
\end{equation*}
$$

The number p and the values ϵ_{i} are chosen by the routine so that each problem can be solved using the solution of its predecessor as a starting approximation. Jacobians $\frac{\partial f}{\partial \epsilon}$ and $\frac{\partial g}{\partial \epsilon}$ are required and they may be supplied by you via JACEPS and JACGEP respectively or may be computed by numerical differentiation.

4 References

Curtis A R, Powell M J D and Reid J K (1974) On the estimation of sparse Jacobian matrices J. Inst. Maths. Applics. 13 117-119
Pereyra V (1979) PASVA3: An adaptive finite-difference Fortran program for first order nonlinear, ordinary boundary problems Codes for Boundary Value Problems in Ordinary Differential Equations. Lecture Notes in Computer Science (eds B Childs, M Scott, J W Daniel, E Denman and P Nelson) 76 Springer-Verlag

5 Parameters

1: N - INTEGER Input
On entry: n, the number of differential equations.
Constraint: $\mathrm{N}>0$.

2: MNP - INTEGER
Input
On entry: MNP must be set to the maximum permitted number of points in the finite difference mesh. If LWORK or LIWORK are too small then internally MNP will be replaced by the maximum permitted by these values. (A warning message will be output if on entry IFAIL is set to obtain monitoring information.)
Constraint: MNP ≥ 32.
3: NP - INTEGER
Input/Output
On entry: must be set to the number of points to be used in the initial mesh.
Constraint: $4 \leq \mathrm{NP} \leq$ MNP.
On exit: the number of points in the final mesh.
4: NUMBEG - INTEGER Input
On entry: the number of left-hand boundary conditions (that is the number involving $y(a)$ only). Constraint: $0 \leq$ NUMBEG $<\mathrm{N}$.

5: NUMMIX - INTEGER
Input
On entry: the number of coupled boundary conditions (that is the number involving both $y(a)$ and $y(b)$).
Constraint: $0 \leq$ NUMMIX $\leq \mathrm{N}-$ NUMBEG.
6: \quad TOL $-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$
Input
On entry: a positive absolute error tolerance. If

$$
a=x_{1}<x_{2}<\cdots<x_{\mathrm{NP}}=b
$$

is the final mesh, $z_{j}\left(x_{i}\right)$ is the j th component of the approximate solution at x_{i}, and $y_{j}(x)$ is the j th component of the true solution of (1) and (2), then, except in extreme circumstances, it is expected that

$$
\begin{equation*}
\left|z_{j}\left(x_{i}\right)-y_{j}\left(x_{i}\right)\right| \leq \mathrm{TOL}, \quad i=1,2, \ldots, \mathrm{NP} \text { and } j=1,2, \ldots, n \tag{5}
\end{equation*}
$$

Constraint: TOL >0.0.
7: INIT - INTEGER
Input
On entry: indicates whether you wish to supply an initial mesh and approximate solution (INIT $=1$) or whether default values are to be used, (INIT $=0$).
Constraint: $\mathrm{INIT}=0$ or 1.

8: $\quad \mathrm{X}(\mathrm{MNP})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
On entry: you must set $\mathrm{X}(1)=a$ and $\mathrm{X}(\mathrm{NP})=b$. If INIT $=0$ on entry a default equispaced mesh will be used, otherwise you must specify a mesh by setting $\mathrm{X}(i)=x_{i}$, for $i=2,3, \ldots, \mathrm{NP}-1$.
Constraints:

$$
\begin{aligned}
& \text { if } \mathrm{INIT}=0, \mathrm{X}(1)<\mathrm{X}(\mathrm{NP}) \text {; } \\
& \text { if } \mathrm{INIT}=1, \mathrm{X}(1)<\mathrm{X}(2)<\cdots<\mathrm{X}(\mathrm{NP}) .
\end{aligned}
$$

On exit: $\mathrm{X}(1), \mathrm{X}(2), \ldots, \mathrm{X}(\mathrm{NP})$ define the final mesh (with the returned value of NP) and $\mathrm{X}(1)=a$ and $\mathrm{X}(\mathrm{NP})=b$.

9: $\quad \mathrm{Y}(\mathrm{LDY}, \mathrm{MNP})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
On entry: if INIT $=0$, then Y need not be set.
If INIT $=1$, then the array Y must contain an initial approximation to the solution such that $\mathrm{Y}(j, i)$ contains an approximation to

$$
y_{j}\left(x_{i}\right), \quad i=1,2, \ldots, \mathrm{NP} \text { and } j=1,2, \ldots, n
$$

On exit: the approximate solution $z_{j}\left(x_{i}\right)$ satisfying (5) on the final mesh, that is

$$
\mathrm{Y}(j, i)=z_{j}\left(x_{i}\right), \quad i=1,2, \ldots, \mathrm{NP} \text { and } j=1,2, \ldots, n
$$

where NP is the number of points in the final mesh. If an error has occurred then Y contains the latest approximation to the solution. The remaining columns of Y are not used.

10: LDY - INTEGER
Input
On entry: the first dimension of the array Y as declared in the (sub)program from which D02RAF is called.

Constraint: LDY $\geq \mathrm{N}$.

11: $\quad \operatorname{ABT}(\mathrm{N})$ - REAL (KIND=nag_wp) array
Output
On exit: $\mathrm{ABT}(i)$, for $i=1,2, \ldots, n$, holds the largest estimated error (in magnitude) of the i th component of the solution over all mesh points.

12: \quad FCN - SUBROUTINE, supplied by the user.
External Procedure
FCN must evaluate the functions f_{i} (i.e., the derivatives y_{i}^{\prime}) at a general point x for a given value of ϵ, the continuation parameter (see Section 3).

```
The specification of FCN is:
SUBROUTINE FCN (X, EPS, Y, F, N)
INTEGER N
REAL (KIND=nag_wp) X, EPS, Y(N), F(N)
1: X - REAL (KIND=nag_wp) Input
    On entry: }x\mathrm{ , the value of the independent variable.
    EPS - REAL (KIND=nag_wp)
                                Input
    On entry: }\epsilon\mathrm{ , the value of the continuation parameter. This is 1 if continuation is not being
    used.
3: Y(N) - REAL (KIND=nag_wp) array Input
    On entry: }\mp@subsup{y}{i}{}\mathrm{ , for }i=1,2,\ldots,n, the values of the dependent variables at x
4: F(N) - REAL (KIND=nag_wp) array
Output
    On exit: the values of the derivatives fi evaluated at x given \epsilon, for i=1,2,\ldots,n.
5: N - INTEGER Input
    On entry: n, the number of equations.
```

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D02RAF is called. Parameters denoted as Input must not be changed by this procedure.

G must evaluate the boundary conditions in equation (3) and place them in the array BC.

```
The specification of G is:
SUBROUTINE G (EPS, YA, YB, BC, N)
INTEGER N
REAL (KIND=nag_wp) EPS, YA(N), YB(N), BC(N)
1: EPS - REAL (KIND=nag_wp)
                                    Input
    On entry: }\epsilon\mathrm{ , the value of the continuation parameter. This is 1 if continuation is not being
    used.
2: YA(N) - REAL (KIND=nag_wp) array Input
    On entry: the value }\mp@subsup{y}{i}{}(a)\mathrm{ , for }i=1,2,\ldots,n
3: YB(N) - REAL (KIND=nag_wp) array Input
    On entry: the value }\mp@subsup{y}{i}{}(b)\mathrm{ , for }i=1,2,\ldots,n
4: }\quad\textrm{BC}(\textrm{N}) - REAL (KIND=nag_wp) array
    Output
    On exit: the values }\mp@subsup{g}{i}{}(y(a),y(b),\epsilon)\mathrm{ , for }i=1,2,\ldots,n.These must be ordered as follows:
```

```
(i) first, the conditions involving only \(y(a)\) (see NUMBEG);
(ii) next, the NUMMIX coupled conditions involving both \(y(a)\) and \(y(b)\) (see NUMMIX); and,
(iii) finally, the conditions involving only \(y(b)(\mathrm{N}-\mathrm{NUMBEG}\) - NUMMIX).
5: N - INTEGER
Input
On entry: n, the number of equations.
```

G must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D02RAF is called. Parameters denoted as Input must not be changed by this procedure.

14: IJAC - INTEGER
Input
On entry: indicates whether or not you are supplying Jacobian evaluation routines.
IJAC $\neq 0$
You must supply JACOBF and JACOBG and also, when continuation is used, JACEPS and JACGEP.
$\mathrm{IJAC}=0$
Numerical differentiation is used to calculate the Jacobian and the routines D02GAW, D02GAX, D02GAY and D02GAZ respectively may be used as the dummy parameters.

15: JACOBF - SUBROUTINE, supplied by the NAG Library or the user. External Procedure JACOBF evaluates the Jacobian $\left(\frac{\partial f_{i}}{\partial y_{j}}\right)$, for $i=1,2, \ldots, n$ and $j=1,2, \ldots, n$, given x and y_{j}, for $j=1,2, \ldots, n$.
If all Jacobians are to be approximated internally by numerical differentiation then it must be replaced by the NAG defined null function pointer NULLFN.

```
The specification of JACOBF is:
SUBROUTINE JACOBF (X, EPS, Y, F, N)
INTEGER N
REAL (KIND=nag_wp) X, EPS, Y(N), F(N,N)
1: X - REAL (KIND=nag_wp)
On entry: \(x\), the value of the independent variable.
2: \(\quad\) EPS - REAL (KIND=nag_wp)
Input
On entry: \(\epsilon\), the value of the continuation parameter. This is 1 if continuation is not being used.
3: \(\mathrm{Y}(\mathrm{N})-\) REAL (KIND=\(=\) nag_wp) array Input
On entry: \(y_{i}\), for \(i=1,2, \ldots, n\), the values of the dependent variables at \(x\).
4: \(\quad \mathrm{F}(\mathrm{N}, \mathrm{N})-\) REAL (KIND=\(=\) nag_wp) array
Output On exit: \(\mathrm{F}(j, i)\) must be set to the value of \(\frac{\partial f_{i}}{\partial y_{j}}\), evaluated at the point \((x, y)\), for \(i=1,2, \ldots, n\) and \(j=1,2, \ldots, n\).
5: \(\quad \mathrm{N}\) - INTEGER
Input
On entry: n, the number of equations.
```

JACOBF must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D02RAF is called. Parameters denoted as Input must not be changed by this procedure.

JACOBG - SUBROUTINE, supplied by the NAG Library or the user.
External Procedure JACOBG evaluates the Jacobians $\left(\frac{\partial g_{i}}{\partial y_{j}(a)}\right)$ and $\left(\frac{\partial g_{i}}{\partial y_{j}(b)}\right)$. The ordering of the rows of AJ and BJ must correspond to the ordering of the boundary conditions described in the specification of G.
If all Jacobians are to be approximated internally by numerical differentiation then it must be replaced by the NAG defined null function pointer NULLFN.

```
The specification of JACOBG is:
SUBROUTINE JACOBG (EPS, YA, YB, AJ, BJ, N)
INTEGER N
REAL (KIND=nag_wp) EPS, YA(N), YB(N), AJ(N,N), BJ(N,N)
    EPS - REAL (KIND=nag_wp)
On entry: \(\epsilon\), the value of the continuation parameter. This is 1 if continuation is not being used.
2: \(\quad \mathrm{YA}(\mathrm{N})-\) REAL (KIND=\(=\) nag_wp) array Input On entry: the value \(y_{i}(a)\), for \(i=1,2, \ldots, n\).
3: \(\quad \mathrm{YB}(\mathrm{N})-\) REAL (KIND=nag_wp) array Input
On entry: the value \(y_{i}(b)\), for \(i=1,2, \ldots, n\).
4: \(\quad \operatorname{AJ}(\mathrm{N}, \mathrm{N})-\) REAL (KIND=\(=\) nag_wp) array
Output
On exit: \(\mathrm{AJ}(i, j)\) must be set to the value \(\frac{\partial g_{i}}{\partial y_{j}(a)}\), for \(i=1,2, \ldots, n\) and \(j=1,2, \ldots, n\).
5: \(\quad \mathrm{BJ}(\mathrm{N}, \mathrm{N})-\) REAL \((\mathrm{KIND}=\) nag_wp \()\) array \(\quad\) Output
On exit: \(\mathrm{BJ}(i, j)\) must be set to the value \(\frac{\partial g_{i}}{\partial y_{j}(b)}\), for \(i=1,2, \ldots, n\) and \(j=1,2, \ldots, n\).
6: \(\quad \mathrm{N}\) - INTEGER
On entry: \(n\), the number of equations.
```

JACOBG must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D02RAF is called. Parameters denoted as Input must not be changed by this procedure.

DELEPS - REAL (KIND=nag_wp)
Input/Output
On entry: must be given a value which specifies whether continuation is required. If DELEPS ≤ 0.0 or DELEPS ≥ 1.0 then it is assumed that continuation is not required. If $0.0<$ DELEPS <1.0 then it is assumed that continuation is required unless DELEPS $<\sqrt{\text { machine precision }}$ when an error exit is taken. DELEPS is used as the increment $\epsilon_{2}-\epsilon_{1}$ (see (4)) and the choice DELEPS $=0.1$ is recommended.
On exit: an overestimate of the increment $\epsilon_{p}-\epsilon_{p-1}$ (in fact the value of the increment which would have been tried if the restriction $\epsilon_{p}=1$ had not been imposed). If continuation was not requested then DELEPS $=0.0$.

If continuation is not requested then JACEPS and JACGEP may each be replaced by dummy actual parameters in the call to D02RAF. (D02GAW and D02GAX respectively may be used as the dummy parameters.)

18: JACEPS - SUBROUTINE, supplied by the NAG Library or the user.
External Procedure
JACEPS evaluates the derivative $\frac{\partial f_{i}}{\partial \epsilon}$ given x and y if continuation is being used.
If all Jacobians (derivatives) are to be approximated internally by numerical differentiation, or continuation is not being used, then it must be replaced by the NAG defined null function pointer NULLFN.

```
The specification of JACEPS is:
SUBROUTINE JACEPS (X, EPS, Y, F, N)
INTEGER N
REAL (KIND=nag_wp) X, EPS, Y(N), F(N)
1: X - REAL (KIND=nag_wp) Input
    On entry: x, the value of the independent variable.
2: EPS - REAL (KIND=nag_wp) Input
    On entry: }\epsilon\mathrm{ , the value of the continuation parameter.
3: Y(N) - REAL (KIND=nag_wp) array Input
    On entry: the solution values }\mp@subsup{y}{i}{}\mathrm{ , for }i=1,2,\ldots,n, at the point x
4: F(N) - REAL (KIND=nag_wp) array
    Output
    On exit: }\textrm{F}(i)\mathrm{ must contain the value }\frac{\partial\mp@subsup{f}{i}{}}{\partial\epsilon}\mathrm{ at the point (x,y), for }i=1,2,\ldots,n
5: N - INTEGER Input
    On entry: n, the number of equations.
```

JACEPS must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D02RAF is called. Parameters denoted as Input must not be changed by this procedure.

JACGEP - SUBROUTINE, supplied by the NAG Library or the user.
External Procedure
JACGEP evaluates the derivatives $\frac{\partial g_{i}}{\partial \epsilon}$ if continuation is being used.
If all Jacobians (derivatives) are to be approximated internally by numerical differentiation, or continuation is not being used, then it must be replaced by the NAG defined null function pointer NULLFN.

```
The specification of JACGEP is:
SUBROUTINE JACGEP (EPS, YA, YB, BCEP, N)
INTEGER N
REAL (KIND=nag_wp) EPS, YA(N), YB(N), BCEP(N)
1: EPS - REAL (KIND=nag_wp)
    On entry: \epsilon, the value of the continuation parameter.
```

 Input
    ```
2: \(\quad \mathrm{YA}(\mathrm{N})-\mathrm{REAL}(\mathrm{KIND}=\) nag_wp \()\) array
                                Input
    On entry: the value of \(y_{i}(a)\), for \(i=1,2, \ldots, n\).
    \(\mathrm{YB}(\mathrm{N})\) - REAL (KIND=nag_wp) array Input
    On entry: the value of \(y_{i}(b)\), for \(i=1,2, \ldots, n\).
    \(\operatorname{BCEP}(\mathrm{N})\) - REAL (KIND=nag_wp) array
                                Output
    On exit: \(\operatorname{BCEP}(i)\) must contain the value of \(\frac{\partial g_{i}}{\partial \epsilon}\), for \(i=1,2, \ldots, n\).
    N - INTEGER Input
    On entry: n, the number of equations.
```

JACGEP must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D02RAF is called. Parameters denoted as Input must not be changed by this procedure.

WORK(LWORK) - REAL (KIND=nag_wp) array Workspace LWORK - INTEGER

Input
On entry: the dimension of the array WORK as declared in the (sub)program from which D02RAF is called.

Constraint: LWORK $\geq \mathrm{MNP} \times\left(3 \mathrm{~N}^{2}+6 \mathrm{~N}+2\right)+4 \mathrm{~N}^{2}+3 \mathrm{~N}$.
IWORK(LIWORK) - INTEGER array Workspace
LIWORK - INTEGER
Input
On entry: the dimension of the array IWORK as declared in the (sub)program from which D02RAF is called.
Constraints:

$$
\begin{aligned}
& \text { if IJAC } \neq 0, \text { LIWORK } \geq \mathrm{MNP} \times(2 \times \mathrm{N}+1)+\mathrm{N} \\
& \text { if } \mathrm{IJAC}=0, \text { LIWORK } \geq \mathrm{MNP} \times(2 \times \mathrm{N}+1)+\mathrm{N}^{2}+4 \times \mathrm{N}+2
\end{aligned}
$$

IFAIL - INTEGER
Input/Output
For this routine, the normal use of IFAIL is extended to control the printing of error and warning messages as well as specifying hard or soft failure (see Section 3.3 in the Essential Introduction).
On entry: IFAIL must be set to a value with the decimal expansion $c b a$, where each of the decimal digits c, b and a must have a value of 0 or 1 .
$a=0$ specifies hard failure, otherwise soft failure;
$b=0$ suppresses error messages, otherwise error messages will be printed (see Section 6);
$c=0$ suppresses warning messages, otherwise warning messages will be printed (see Section 6).
The recommended value for inexperienced users is 110 (i.e., hard failure with all messages printed).
On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
One or more of the parameters N, MNP, NP, NUMBEG, NUMMIX, TOL, DELEPS, LWORK or LIWORK is incorrectly set, or $\mathrm{X}(1) \geq \mathrm{X}(\mathrm{NP})$ or the mesh points $\mathrm{X}(i)$ are not in strictly ascending order.

IFAIL $=2$
A finer mesh is required for the accuracy requested; that is MNP is not large enough. This error exit normally occurs when the problem being solved is difficult (for example, there is a boundary layer) and high accuracy is requested. A poor initial choice of mesh points will make this error exit more likely.

IFAIL $=3$
The Newton iteration has failed to converge. There are several possible causes for this error:
(i) faulty coding in one of the Jacobian calculation routines;
(ii) if IJAC $=0$ then inaccurate Jacobians may have been calculated numerically (this is a very unlikely cause); or,
(iii) a poor initial mesh or initial approximate solution has been selected either by you or by default or there are not enough points in the initial mesh. Possibly, you should try the continuation facility.

IFAIL $=4$
The Newton iteration has reached round-off error level. It could be however that the answer returned is satisfactory. The error is likely to occur if too high an accuracy is requested.

IFAIL $=5$
The Jacobian calculated by JACOBG (or the equivalent matrix calculated by numerical differentiation) is singular. This may occur due to faulty coding of JACOBG or, in some circumstances, to a zero initial choice of approximate solution (such as is chosen when INIT $=0$).
$\operatorname{IFAIL}=6$
There is no dependence on ϵ when continuation is being used. This can be due to faulty coding of JACEPS or JACGEP or, in some circumstances, to a zero initial choice of approximate solution (such as is chosen when INIT $=0$).

IFAIL $=7$
DELEPS is required to be less than machine precision for continuation to proceed. It is likely that either the problem (3) has no solution for some value near the current value of ϵ (see the advisory print out from D02RAF) or that the problem is so difficult that even with continuation it is unlikely to be solved using this routine. If the latter cause is suspected then using more mesh points initially may help.

IFAIL $=8$
IFAIL $=9$
A serious error has occurred in an internal call. Check all array subscripts and subroutine parameter lists in calls to D02RAF. Seek expert help.

IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

$7 \quad$ Accuracy

The solution returned by the routine will be accurate to your tolerance as defined by the relation (5) except in extreme circumstances. The final error estimate over the whole mesh for each component is given in the array ABT . If too many points are specified in the initial mesh, the solution may be more accurate than requested and the error may not be approximately equidistributed.

8 Parallelism and Performance

Not applicable.

9 Further Comments

There are too many factors present to quantify the timing. The time taken by D02RAF is negligible only on very simple problems.

You are strongly recommended to set IFAIL to obtain self-explanatory error messages, and also monitoring information about the course of the computation. Monitoring information is written to a logical advisory message unit which normally default to the same unit number as the error message unit (see Section 3.4 in the Essential Introduction for details); the advisory message unit number can be changed by calling X04ABF.
In the case where you wish to solve a sequence of similar problems, the use of the final mesh and solution from one case as the initial mesh is strongly recommended for the next.

10 Example

This example solves the differential equation

$$
y^{\prime \prime \prime}=-y y^{\prime \prime}-2 \epsilon\left(1-y^{\prime 2}\right)
$$

with $\epsilon=1$ and boundary conditions

$$
y(0)=y^{\prime}(0)=0, \quad y^{\prime}(10)=1
$$

to an accuracy specified by $\mathrm{TOL}=1.0 \mathrm{E}-4$. The continuation facility is used with the continuation parameter ϵ introduced as in the differential equation above and with DELEPS $=0.1$ initially. (The continuation facility is not needed for this problem and is used here for illustration.)

```
10.1 Program Text
    D02RAF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    Module dO2rafe_mod
    D02RAF Example Program Module:
                        Parameters and User-defined Routines
    .. Use Statements ..
    Use nag_library, Only: nag_wp
    .. Implicit None Statement ..
    Implicit None
    .. Accessibility Statements ..
    Private
    Public :: fcn, g, jaceps, jacgep, jacobf, &
    jacobg
    .. Parameters ..
    Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
    Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
    Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
    Integer, Parameter, Public :: iset = 1, \overline{n}=\overline{3}, nin = 5, nout = 6
    Contains
    Subroutine fcn(x,eps,y,f,n)
! .. Scalar Arguments ..
        Real (Kind=nag_wp), Intent (In) :: eps, x
        Integer, Intent (In) :: n
        .. Array Arguments ..
        Real (Kind=nag_wp), Intent (Out) :: f(n)
        Real (Kind=nag_wp), Intent (In) :: y(n)
! .. Executable Statements ..
            f(1) = y(2)
            f(2)=y(3)
            f(3) = -y(1)*y(3) - two*(one-y(2)*y(2))*eps
            Return
    End Subroutine fcn
    Subroutine g(eps,ya,yb,bc,n)
    .. Scalar Arguments ..
            Real (Kind=nag_wp), Intent (In) :: eps
            Integer, Intent (In) :: n
            .. Array Arguments ..
            Real (Kind=nag_wp), Intent (Out) :: bc(n)
            Real (Kind=nag_wp), Intent (In) :: ya(n), yb(n)
            .. Executable Statements ..
            bc(1) = ya(1)
            bc(2) = ya(2)
            bc(3) = yb(2) - one
            Return
    End Subroutine g
    Subroutine jaceps(x,eps,y,f,n)
            .. Scalar Arguments ..
            Real (Kind=nag_wp), Intent (In) :: eps, x
            Integer, Intent (In) :: n
            .. Array Arguments ..
            Real (Kind=nag_wp), Intent (Out) :: f(n)
            Real (Kind=nag_wp), Intent (In) :: y (n)
            .. Executable Statements ..
            f(1:2) = zero
            f(3)= -two*(one-y(2)*y(2))
            Return
    End Subroutine jaceps
    Subroutine jacgep(eps,ya,yb,bcep,n)
        .. Scalar Arguments ..
```

 Real (Kind=nag_wp) :: deleps, tol
 Integer : : ifail, ijac, init, j, ldy, \&
 liwork, lwork, mnp, np, numbeg, \&
 nummix, outchn
 ! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable : abt(:), work(:), x(:), y(:,:)
Integer, Allocatable : : iwork(:)
.. Executable Statements ..
Write (nout,*) 'DO2RAF Example Program Results'
Skip heading in data file
Read (nin,*)
Read (nin,*) mnp, np
ldy $=n$
liwork $=m n p *(2 * n+1)+n$

```
    lwork = mnp*(3*n*n+6*n+2) + 4*n*n + 3*n
    Allocate (abt(n),work(lwork),x(mnp),y(ldy,mnp),iwork(liwork))
    outchn = nout
    Write (nout,*)
    Call x04abf(iset,outchn)
    Read (nin,*) tol, deleps
    Read (nin,*) init, ijac, numbeg, nummix
    Read (nin,*) x(1), x(np)
    ifail: behaviour on error exit
                =1 for quiet-soft exit
    * Set IFAIL to 111 to obtain monitoring information *
    ifail = 1
    Call d02raf(n,mnp,np,numbeg,nummix,tol,init,x,y,ldy,abt,fcn,g,ijac, &
        jacobf,jacobg,deleps,jaceps,jacgep,work,lwork,iwork,liwork,ifail)
    If (ifail==0 .Or. ifail==4) Then
        Write (nout,*) 'Calculation using analytic Jacobians'
        If (ifail==4) Write (nout,99996) 'On exit from DO2RAF IFAIL = 4'
        Write (nout,*)
        Write (nout,99999) 'Solution on final mesh of ', np, ' points'
        Write (nout,*) , X(I) Y1(I) Y2(I) Y3(I)'
        Write (nout,99998)(x(j),y(1:n,j),j=1,np)
        Write (nout,*)
        Write (nout,*) 'Maximum estimated error by components'
        Write (nout,99997) abt(1:n)
Else
        Write (nout,99996) ' ** D02RAF returned with IFAIL = ', ifail
    End If
99999 Format (1X,A,I2,A)
99998 Format (1X,F10.3,3F13.4)
99997 Format (11X,1P,3E13.2)
99996 Format (1X,A,I5)
    End Program dO2rafe
```


10.2 Program Data

```
DO2RAF Example Program Data
    40 : max mesh size, initial mesh size
    1.OE-4 1.OE-1 : tol, deleps
    0 1 0 : init, ijac, numbeg, nummix
    0.0 10.0 : domain end-points
```


10.3 Program Results

D02RAF Example Program Results

| Calculation using analytic Jacobians | | | |
| ---: | ---: | ---: | ---: |
| Solution on final mesh of | 33 points | | |
| X(I) | Y1(I) | Y2(I) | Y3(I) |
| 0.000 | 0.0000 | 0.0000 | 1.6872 |
| 0.062 | 0.0032 | 0.1016 | 1.5626 |
| 0.125 | 0.0125 | 0.1954 | 1.4398 |
| 0.188 | 0.0275 | 0.2816 | 1.3203 |
| 0.250 | 0.0476 | 0.3605 | 1.2054 |
| 0.375 | 0.1015 | 0.4976 | 0.9924 |
| 0.500 | 0.1709 | 0.6097 | 0.8048 |
| 0.625 | 0.2530 | 0.6999 | 0.6438 |
| 0.703 | 0.3095 | 0.7467 | 0.5563 |
| 0.781 | 0.3695 | 0.7871 | 0.4784 |
| 0.938 | 0.4978 | 0.8513 | 0.3490 |
| 1.094 | 0.6346 | 0.8977 | 0.2502 |
| 1.250 | 0.7776 | 0.9308 | 0.1763 |
| 1.458 | 0.9748 | 0.9598 | 0.1077 |
| 1.667 | 1.1768 | 0.9773 | 0.0639 |
| 1.875 | 1.3815 | 0.9876 | 0.0367 |
| 2.031 | 1.5362 | 0.9922 | 0.0238 |

| 2.188 | 1.6915 | 0.9952 | 0.0151 |
| :---: | :---: | :---: | :---: |
| 2.500 | 2.0031 | 0.9983 | 0.0058 |
| 2.656 | 2.1591 | 0.9990 | 0.0035 |
| 2.812 | 2.3153 | 0.9994 | 0.0021 |
| 3.125 | 2.6277 | 0.9998 | 0.0007 |
| 3.750 | 3.2526 | 1.0000 | 0.0001 |
| 4.375 | 3.8776 | 1.0000 | 0.0000 |
| 5.000 | 4.5026 | 1.0000 | 0.0000 |
| 5.625 | 5.1276 | 1.0000 | -0.0000 |
| 6.250 | 5.7526 | 1.0000 | 0.0000 |
| 6.875 | 6.3776 | 1.0000 | -0.0000 |
| 7.500 | 7.0026 | 1.0000 | 0.0000 |
| 8.125 | 7.6276 | 1.0000 | -0.0000 |
| 8.750 | 8.2526 | 1.0000 | 0.0000 |
| 9.375 | 8.8776 | 1.0000 | -0.0000 |
| 10.000 | 9.5026 | 1.0000 | 0.0000 |
| Maximum est | $\begin{aligned} & \text { d error } \\ & .92 \mathrm{E}-05 \end{aligned}$ | mponents
 .81E-05 | $6.42 \mathrm{E}-05$ |

Example Program
Solution of Third-order BVP

