
NAG Library Routine Document

D02PFF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02PFF is a one-step routine for solving an initial value problem for a first-order system of ordinary
differential equations using Runge–Kutta methods.

2 Specification

SUBROUTINE D02PFF (F, N, TNOW, YNOW, YPNOW, IUSER, RUSER, IWSAV, RWSAV,
IFAIL)

&

INTEGER N, IUSER(*), IWSAV(130), IFAIL
REAL (KIND=nag_wp) TNOW, YNOW(N), YPNOW(N), RUSER(*), RWSAV(32*N+350)
EXTERNAL F

3 Description

D02PFF and its associated routines (D02PQF, D02PRF, D02PSF, D02PTF and D02PUF) solve an initial
value problem for a first-order system of ordinary differential equations. The routines, based on Runge–
Kutta methods and derived from RKSUITE (see Brankin et al. (1991)), integrate

y0 ¼ f t; yð Þ given y t0ð Þ ¼ y0

where y is the vector of n solution components and t is the independent variable.

D02PFF is designed to be used in complicated tasks when solving systems of ordinary differential
equations. You must first call D02PQF to specify the problem and how it is to be solved. Thereafter you
(repeatedly) call D02PFF to take one integration step at a time from TSTART in the direction of TEND
(as specified in D02PQF). In this manner D02PFF returns an approximation to the solution YNOW and
its derivative YPNOW at successive points TNOW. If D02PFF encounters some difficulty in taking a
step, the integration is not advanced and the routine returns with the same values of TNOW, YNOW and
YPNOW as returned on the previous successful step. D02PFF tries to advance the integration as far as
possible subject to passing the test on the local error and not going past TEND.

In the call to D02PQF you can specify either the first step size for D02PFF to attempt or that it computes
automatically an appropriate value. Thereafter D02PFF estimates an appropriate step size for its next
step. This value and other details of the integration can be obtained after any call to D02PFF by a call to
D02PTF. The local error is controlled at every step as specified in D02PQF. If you wish to assess the
true error, you must set METHOD to a positive value in the call to D02PQF. This assessment can be
obtained after any call to D02PFF by a call to D02PUF.

If you want answers at specific points there are two ways to proceed:

(i) The more efficient way is to step past the point where a solution is desired, and then call D02PSF to
get an answer there. Within the span of the current step, you can get all the answers you want at
very little cost by repeated calls to D02PSF. This is very valuable when you want to find where
something happens, e.g., where a particular solution component vanishes. You cannot proceed in
this way with METHOD ¼ 3 or �3.

(ii) The other way to get an answer at a specific point is to set TEND to this value and integrate to
TEND. D02PFF will not step past TEND, so when a step would carry it past, it will reduce the step
size so as to produce an answer at TEND exactly. After getting an answer there (TNOW ¼ TEND),
you can reset TEND to the next point where you want an answer, and repeat. TEND could be reset
by a call to D02PQF, but you should not do this. You should use D02PRF instead because it is both
easier to use and much more efficient. This way of getting answers at specific points can be used

D02 – Ordinary Differential D02PFF

Mark 25 D02PFF.1

with any of the available methods, but it is the only way with METHOD ¼ 3 or �3. It can be
inefficient. Should this be the case, the code will bring the matter to your attention.

4 References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge–Kutta codes for the
initial value problems for ODEs SoftReport 91-S1 Southern Methodist University

5 Parameters

1: F – SUBROUTINE, supplied by the user. External Procedure

F must evaluate the functions fi (that is the first derivatives y0i) for given values of the arguments
t, yi.

The specification of F is:

SUBROUTINE F (T, N, Y, YP, IUSER, RUSER)

INTEGER N, IUSER(*)
REAL (KIND=nag_wp) T, Y(N), YP(N), RUSER(*)

1: T – REAL (KIND=nag_wp) Input

On entry: t, the current value of the independent variable.

2: N – INTEGER Input

On entry: n, the number of ordinary differential equations in the system to be solved.

3: YðNÞ – REAL (KIND=nag_wp) array Input

On entry: the current values of the dependent variables, yi, for i ¼ 1; 2; . . . ; n.

4: YPðNÞ – REAL (KIND=nag_wp) array Output

On exit: the values of fi, for i ¼ 1; 2; . . . ; n.

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

F is called with the parameters IUSER and RUSER as supplied to D02PFF. You are free
to use the arrays IUSER and RUSER to supply information to F as an alternative to
using COMMON global variables.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program
from which D02PFF is called. Parameters denoted as Input must not be changed by this
procedure.

2: N – INTEGER Input

On entry: n, the number of ordinary differential equations in the system to be solved.

Constraint: N � 1.

3: TNOW – REAL (KIND=nag_wp) Output

On exit: t, the value of the independent variable at which a solution has been computed.

4: YNOWðNÞ – REAL (KIND=nag_wp) array Output

On exit: an approximation to the solution at TNOW. The local error of the step to TNOW was no
greater than permitted by the specified tolerances (see D02PQF).

D02PFF NAG Library Manual

D02PFF.2 Mark 25

5: YPNOWðNÞ – REAL (KIND=nag_wp) array Output

On exit: an approximation to the first derivative of the solution at TNOW.

6: IUSERð�Þ – INTEGER array User Workspace
7: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by D02PFF, but are passed directly to F and may be used to pass
information to this routine as an alternative to using COMMON global variables.

8: IWSAVð130Þ – INTEGER array Communication Array
9: RWSAVð32� Nþ 350Þ – REAL (KIND=nag_wp) array Communication Array

On entry: these must be the same arrays supplied in a previous call to D02PQF. They must remain
unchanged between calls.

On exit: information about the integration for use on subsequent calls to D02PFF or other
associated routines.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
parameters may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A call to this routine cannot be made after it has returned an error.
The setup routine must be called to start another problem.

On entry, N ¼ valueh i, but the value passed to the setup routine was N ¼ valueh i.
On entry, the communication arrays have become corrupted, or a catastrophic error has already
been detected elsewhere. You cannot continue integrating the problem.

TEND, as specified in the setup routine, has already been reached.
To start a new problem, you will need to call the setup routine.
To continue integration beyond TEND then D02PRF must first be called to reset TEND to a new
end value.

IFAIL ¼ 2

More than 100 output points have been obtained by integrating to TEND (as specified in the setup
routine). They have been so clustered that it would probably be (much) more efficient to use the
interpolation routine (if METHODj j ¼ 3, switch to METHODj j ¼ 2 at setup).
However, you can continue integrating the problem.

D02 – Ordinary Differential D02PFF

Mark 25 D02PFF.3

IFAIL ¼ 3

Approximately valueh i function evaluations have been used to compute the solution since the
integration started or since this message was last printed.
However, you can continue integrating the problem.

IFAIL ¼ 4

Approximately valueh i function evaluations have been used to compute the solution since the
integration started or since this message was last printed. Your problem has been diagnosed as
stiff. If the situation persists, it will cost roughly valueh i times as much to reach TEND (setup) as
it has cost to reach the current time. You should probably call routines intended for stiff problems.
However, you can continue integrating the problem.

IFAIL ¼ 5

In order to satisfy your error requirements the solver has to use a step size of valueh i at the
current time, valueh i. This step size is too small for the machine precision, and is smaller than
valueh i.

IFAIL ¼ 6

The global error assessment algorithm failed at start of integration.
The integration is being terminated.

The global error assessment may not be reliable for times beyond valueh i.
The integration is being terminated.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

The accuracy of integration is determined by the parameters TOL and THRESH in a prior call to
D02PQF (see the routine document for D02PQF for further details and advice). Note that only the local
error at each step is controlled by these parameters. The error estimates obtained are not strict bounds
but are usually reliable over one step. Over a number of steps the overall error may accumulate in
various ways, depending on the properties of the differential system.

8 Parallelism and Performance

D02PFF is not threaded by NAG in any implementation.

D02PFF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

D02PFF NAG Library Manual

D02PFF.4 Mark 25

9 Further Comments

If D02PFF returns with IFAIL ¼ 5 and the accuracy specified by TOL and THRESH is really required
then you should consider whether there is a more fundamental difficulty. For example, the solution may
contain a singularity. In such a region the solution components will usually be large in magnitude.
Successive output values of YNOW should be monitored with the aim of trapping the solution before the
singularity. In any case numerical integration cannot be continued through a singularity, and analytical
treatment may be necessary.

Performance statistics are available after any return from D02PFF (except when IFAIL ¼ 1) by a call to
D02PTF. If METHOD > 0 in the call to D02PQF, global error assessment is available after any return
from D02PFF (except when IFAIL ¼ 1) by a call to D02PUF.

After a failure with IFAIL ¼ 5 or 6 each of the diagnostic routines D02PTF and D02PUF may be called
only once.

If D02PFF returns with IFAIL ¼ 4 then it is advisable to change to another code more suited to the
solution of stiff problems. D02PFF will not return with IFAIL ¼ 4 if the problem is actually stiff but it is
estimated that integration can be completed using less function evaluations than already computed.

10 Example

This example solves the equation

y00 ¼ �y; y 0ð Þ ¼ 0; y0 0ð Þ ¼ 1

reposed as

y01 ¼ y2

y02 ¼ �y1

over the range 0; 2�½ � with initial conditions y1 ¼ 0:0 and y2 ¼ 1:0. We use relative error control with
threshold values of 1:0E�8 for each solution component and print the solution at each integration step
across the range. We use a medium order Runge–Kutta method (METHOD ¼ 2) with tolerances
TOL ¼ 1:0E�4 and TOL ¼ 1:0E�5 in turn so that we may compare the solutions.

10.1 Program Text

! D02PFF Example Program Text
! Mark 25 Release. NAG Copyright 2014.

Module d02pffe_mod

! D02PFF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: tol1 = 1.0E-4_nag_wp
Real (Kind=nag_wp), Parameter, Public :: tol2 = 1.0E-5_nag_wp
Integer, Parameter, Public :: liwsav = 130, n = 2, nin = 5, &

nout = 6
Integer, Parameter, Public :: lrwsav = 350 + 32*n

Contains
Subroutine f(t,n,y,yp,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t

D02 – Ordinary Differential D02PFF

Mark 25 D02PFF.5

Integer, Intent (In) :: n
! .. Array Arguments ..

Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: y(n)
Real (Kind=nag_wp), Intent (Out) :: yp(n)
Integer, Intent (Inout) :: iuser(*)

! .. Executable Statements ..
yp(1) = y(2)
yp(2) = -y(1)
Return

End Subroutine f
End Module d02pffe_mod

Program d02pffe

! D02PFF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02pff, d02pqf, d02ptf, nag_wp
Use d02pffe_mod, Only: f, liwsav, lrwsav, n, nin, nout, tol1, tol2

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: hnext, hstart, tend, tnow, tol, &

tstart, waste
Integer :: i, ifail, method, stpcst, &

stpsok, totf
! .. Local Arrays ..

Real (Kind=nag_wp) :: ruser(1)
Real (Kind=nag_wp), Allocatable :: rwsav(:), thres(:), ynow(:), &

ypnow(:), ystart(:)
Integer :: iuser(1)
Integer, Allocatable :: iwsav(:)

! .. Executable Statements ..
Write (nout,*) ’D02PFF Example Program Results’

! Skip heading in data file
Read (nin,*)
Read (nin,*) method
Allocate (thres(n),iwsav(liwsav),rwsav(lrwsav),ynow(n),ypnow(n), &

ystart(n))

! Set initial conditions and input for D02PQF

Read (nin,*) tstart, tend
Read (nin,*) ystart(1:n)
Read (nin,*) hstart
Read (nin,*) thres(1:n)

Do i = 1, 2
If (i==1) tol = tol1
If (i==2) tol = tol2

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02pqf(n,tstart,tend,ystart,tol,thres,method,hstart,iwsav,rwsav, &

ifail)

Write (nout,99999) tol
Write (nout,99998)
Write (nout,99997) tstart, ystart(1:n)

loop: Do
ifail = 0
Call d02pff(f,n,tnow,ynow,ypnow,iuser,ruser,iwsav,rwsav,ifail)

If (ifail==0) Then
Write (nout,99997) tnow, ynow(1:n)
If (tnow>=tend) Exit loop

Else

D02PFF NAG Library Manual

D02PFF.6 Mark 25

Exit loop
End If

End Do loop

ifail = 0
Call d02ptf(totf,stpcst,waste,stpsok,hnext,iwsav,rwsav,ifail)
Write (nout,99996) totf

End Do

99999 Format (/’ Calculation with TOL = ’,E8.1)
99998 Format (/’ t y1 y2’/)
99997 Format (1X,F6.3,2(3X,F8.4))
99996 Format (/’ Cost of the integration in evaluations of F is’,I6)

End Program d02pffe

10.2 Program Data

D02PFF Example Program Data
2 : method
0.0 6.28318530717958647692 : tstart, tend
0.0 1.0 : ystart(1:n)
0.0 : hstart
1.0E-8 1.0E-8 : thres(1:n)

10.3 Program Results

D02PFF Example Program Results

Calculation with TOL = 0.1E-03

t y1 y2

0.000 0.0000 1.0000
0.785 0.7071 0.7071
1.519 0.9987 0.0513
2.282 0.7573 -0.6531
2.911 0.2285 -0.9735
3.706 -0.5348 -0.8450
4.364 -0.9399 -0.3414
5.320 -0.8209 0.5710
5.802 -0.4631 0.8863
6.283 0.0000 1.0000

Cost of the integration in evaluations of F is 204

Calculation with TOL = 0.1E-04

t y1 y2

0.000 0.0000 1.0000
0.393 0.3827 0.9239
0.785 0.7071 0.7071
1.416 0.9881 0.1538
1.870 0.9557 -0.2943
2.204 0.8062 -0.5916
2.761 0.3711 -0.9286
3.230 -0.0880 -0.9961
3.587 -0.4304 -0.9026
4.022 -0.7710 -0.6368
4.641 -0.9974 -0.0717
5.152 -0.9049 0.4256
5.521 -0.6903 0.7235
5.902 -0.3718 0.9283
6.283 0.0000 1.0000

Cost of the integration in evaluations of F is 314

D02 – Ordinary Differential D02PFF

Mark 25 D02PFF.7

-1

-0.5

 0

 0.5

 1

 0 1 2 3 4 5 6 7
0.00000

0.00000

0.00000

0.00000

0.00001

0.00010

So
lu

ti
on

 (
y,

y’
)

ab
s(

E
rr

or
)

t

Example Program
First-order ODEs using Step-by-step Runge-Kutta

Medium-order Method using Two Tolerances

y-solution
y’-solution

y-error (tol = 0.00001)
y-error (tol = 0.0001)

sin(x)
cos(x)

D02PFF NAG Library Manual

D02PFF.8 (last) Mark 25

	D02PFF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Brankin et al. (1991)

	5 Parameters
	F
	T
	N
	Y
	YP
	IUSER
	RUSER

	N
	TNOW
	YNOW
	YPNOW
	IUSER
	RUSER
	IWSAV
	RWSAV
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

