
NAG Library Routine Document

D02LAF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02LAF is a routine for integrating a non-stiff system of second-order ordinary differential equations
using Runge–Kutta–Nystrom techniques.

2 Specification

SUBROUTINE D02LAF (FCN, NEQ, T, TEND, Y, YP, YDP, RWORK, LRWORK, IFAIL)

INTEGER NEQ, LRWORK, IFAIL
REAL (KIND=nag_wp) T, TEND, Y(NEQ), YP(NEQ), YDP(NEQ), RWORK(LRWORK)
EXTERNAL FCN

3 Description

Given the initial values x; y1; y2; . . . ; yNEQ; y
0
1; y
0
2; . . . ; y0NEQ D02LAF integrates a non-stiff system of

second-order differential equations of the type

y00i ¼ fi x; y1; y2; . . . ; yNEQ

� �
; i ¼ 1; 2; . . . ;NEQ;

from x ¼ T to x ¼ TEND using a Runge–Kutta–Nystrom formula pair. The system is defined by FCN,
which evaluates fi in terms of x and y1; y2; . . . ; yNEQ, where y1; y2; . . . ; yNEQ are supplied at x.

There are two Runge–Kutta–Nystrom formula pairs implemented in this routine. The lower order
method is intended if you have moderate accuracy requirements and may be used in conjunction with the
interpolation routine D02LZF to produce solutions and derivatives at user-specified points. The higher
order method is intended if you have high accuracy requirements.

In one-step mode the routine returns approximations to the solution, derivative and fi at each integration
point. In interval mode these values are returned at the end of the integration range. You select the order
of the method, the mode of operation, the error control and various optional inputs by a prior call to
D02LXF.

For a description of the Runge–Kutta–Nystrom formula pairs see Dormand et al. (1986a) and Dormand
et al. (1986b) and for a description of their practical implementation see Brankin et al. (1989).

4 References

Brankin R W, Dormand J R, Gladwell I, Prince P J and Seward W L (1989) Algorithm 670: A Runge–
Kutta–Nystrom Code ACM Trans. Math. Software 15 31–40

Dormand J R, El–Mikkawy M E A and Prince P J (1986a) Families of Runge–Kutta–Nystrom formulae
Mathematical Report TPMR 86-1 Teesside Polytechnic

Dormand J R, El–Mikkawy M E A and Prince P J (1986b) High order embedded Runge–Kutta–
Nystrom formulae Mathematical Report TPMR 86-2 Teesside Polytechnic

5 Parameters

1: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (that is the second derivatives y00i) for given values of its
arguments x, y1; y2; . . . ; yNEQ.

D02 – Ordinary Differential D02LAF

Mark 25 D02LAF.1

The specification of FCN is:

SUBROUTINE FCN (NEQ, T, Y, F)

INTEGER NEQ
REAL (KIND=nag_wp) T, Y(NEQ), F(NEQ)

1: NEQ – INTEGER Input

On entry: the number of differential equations.

2: T – REAL (KIND=nag_wp) Input

On entry: x, the value of the argument.

3: YðNEQÞ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ;NEQ, the value of the argument.

4: FðNEQÞ – REAL (KIND=nag_wp) array Output

On exit: the value of fi, for i ¼ 1; 2; . . . ;NEQ.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02LAF is called. Parameters denoted as Input must not be changed by
this procedure.

2: NEQ – INTEGER Input

On entry: the number of second-order ordinary differential equations to be solved by D02LAF. It
must contain the same value as the parameter NEQ used in a prior call to D02LXF.

Constraint: NEQ � 1.

3: T – REAL (KIND=nag_wp) Input/Output

On entry: the initial value of the independent variable x.

Constraint: T 6¼ TEND.

On exit: the value of the independent variable, which is usually TEND, unless an error has
occurred or the code is operating in one-step mode. If the integration is to be continued, possibly
with a new value for TEND, T must not be changed.

4: TEND – REAL (KIND=nag_wp) Input

On entry: the end point of the range of integration. If TEND < T on initial entry, integration will
proceed in the negative direction. TEND may be reset, in the direction of integration, before any
continuation call.

5: YðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of the solution y1; y2; . . . ; yNEQ.

On exit: the computed values of the solution at the exit value of T. If the integration is to be
continued, possibly with a new value for TEND, these values must not be changed.

6: YPðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of the derivatives y01; y
0
2; . . . ; y0NEQ.

On exit: the computed values of the derivatives at the exit value of T. If the integration is to be
continued, possibly with a new value for TEND, these values must not be changed.

D02LAF NAG Library Manual

D02LAF.2 Mark 25

7: YDPðNEQÞ – REAL (KIND=nag_wp) array Input/Output

On entry: must be unchanged from a previous call to D02LAF.

On exit: the computed values of the second derivative at the exit value of T, unless illegal input is
detected, in which case the elements of YDP may not have been initialized. If the integration is to
be continued, possibly with a new value for TEND, these values must not be changed.

8: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Communication Array

This must be the same parameter RWORK as supplied to D02LXF. It is used to pass information
from D02LXF to D02LAF, and from D02LAF to both D02LYF and D02LZF. Therefore the
contents of this array must not be changed before the call to D02LAF or calling either of the
routines D02LYF and D02LZF.

9: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
D02LAF is called.

This must be the same parameter LRWORK as supplied to D02LXF.

10: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
parameters may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Illegal input detected, i.e., one of the following conditions:

on any call, T ¼ TEND, or the value of NEQ or LRWORK has been altered;

on a continuation call, the direction of integration has been changed;

D02LXF had not been called previously, or the previous call to D02LXF resulted in an
error exit.

This error exit can be caused if elements of RWORK have been overwritten.

IFAIL ¼ 2

The maximum number of steps has been attempted. (See parameter MAXSTP in D02LXF.) If
integration is to be continued then you need only reset IFAIL and call the routine again and a
further MAXSTP steps will be attempted.

IFAIL ¼ 3

In order to satisfy the error requirements, the step size needed is too small for the machine
precision being used.

D02 – Ordinary Differential D02LAF

Mark 25 D02LAF.3

IFAIL ¼ 4

The code has detected two successive error exits at the current value of x and cannot proceed.
Check all input variables.

IFAIL ¼ 5

The code has detected inefficient use of the integration method. The step size has been reduced by
a significant amount too often in order to hit the output points specified by TEND. (Of the last
100 or more successful steps more than 10% are steps with sizes that have had to be reduced by a
factor of greater than a half.)

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

The accuracy of integration is determined by the parameters TOL, THRES and THRESP in a prior call
to D02LXF. Note that only the local error at each step is controlled by these parameters. The error
estimates obtained are not strict bounds but are usually reliable over one step. Over a number of steps
the overall error may accumulate in various ways, depending on the system. The code is designed so that
a reduction in TOL should lead to an approximately proportional reduction in the error. You are strongly
recommended to call D02LAF with more than one value for TOL and to compare the results obtained to
estimate their accuracy.

The accuracy obtained depends on the type of error test used. If the solution oscillates around zero a
relative error test should be avoided, whereas if the solution is exponentially increasing an absolute error
test should not be used. For a description of the error test see the specifications of the parameters TOL,
THRES and THRESP in routine document D02LXF.

8 Parallelism and Performance

Not applicable.

9 Further Comments

If D02LAF fails with IFAIL ¼ 3 then the value of TOL may be so small that a solution cannot be
obtained, in which case the routine should be called again with a larger value for TOL. If the accuracy
requested is really needed then you should consider whether there is a more fundamental difficulty. For
example:

(a) in the region of a singularity the solution components will usually be of a large magnitude. D02LAF
could be used in one-step mode to monitor the size of the solution with the aim of trapping the
solution before the singularity. In any case numerical integration cannot be continued through a
singularity, and analytical treatment may be necessary;

(b) if the solution contains fast oscillatory components, the routine will require a very small step size to
preserve stability. This will usually be exhibited by excessive computing time and sometimes an

D02LAF NAG Library Manual

D02LAF.4 Mark 25

error exit with IFAIL ¼ 3. The Runge–Kutta–Nystrom methods are not efficient in such cases and
you should consider reposing your problem as a system of first-order ordinary differential equations
and then using a routine from sub-chapter D02M–N with the Blend formulae (see D02MVF).

D02LAF can be used for producing results at short intervals (for example, for tabulation), in two ways.
By far the less efficient is to call D02LAF successively over short intervals, tþ i� 1ð Þ � h to tþ i� h,
although this is the only way if the higher order method has been selected and precisely not what it is
intended for. A more efficient way, only for use when the lower order method has been selected, is to
use D02LAF in one-step mode. The output values of parameters Y, YP, YDP, T and RWORK are set
correctly for a call to D02LZF to compute the solution and derivative at the required points.

10 Example

This example solves the following system (the two body problem)

y001 ¼ �y1= y
2
1 þ y2

2

� �3=2

y002 ¼ �y2= y
2
1 þ y2

2

� �3=2

over the range 0; 20½ � with initial conditions y1 ¼ 1:0� �, y2 ¼ 0:0, y01 ¼ 0:0 and y02 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �
1� �

� �s
where

�, the eccentricity, is 0:5. The system is solved using the lower order method with relative local error
tolerances 1:0E�4 and 1:0E�5 and default threshold tolerances. D02LAF is used in one-step mode
(ONESTP ¼ :TRUE:) and D02LZF provides solution values at intervals of 2:0.

10.1 Program Text

! D02LAF Example Program Text
! Mark 25 Release. NAG Copyright 2014.

Module d02lafe_mod

! D02LAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Integer, Parameter, Public :: neq = 2, nin = 5, nout = 6
Integer, Parameter, Public :: lrwork = 16 + 20*neq

Contains
Subroutine fcn(neq,t,y,f)

! Derivatives for two body problem in y’’ = f(t,y) form

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t
Integer, Intent (In) :: neq

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(neq)
Real (Kind=nag_wp), Intent (In) :: y(neq)

! .. Local Scalars ..
Real (Kind=nag_wp) :: r

! .. Intrinsic Procedures ..
Intrinsic :: sqrt

! .. Executable Statements ..
r = sqrt(y(1)**2+y(2)**2)**3
f(1) = -y(1)/r
f(2) = -y(2)/r
Return

D02 – Ordinary Differential D02LAF

Mark 25 D02LAF.5

End Subroutine fcn
End Module d02lafe_mod

Program d02lafe

! D02LAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02laf, d02lxf, d02lyf, d02lzf, nag_wp
Use d02lafe_mod, Only: fcn, lrwork, neq, nin, nout, zero

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: h, hnext, hstart, hused, t, &

tend, tinc, tnext, tol, tstart
Integer :: i, ifail, itol, maxstp, natt, &

nfail, nsucc, nwant
Logical :: high, onestp, start

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: rwork(:), thres(:), thresp(:), &

y(:), ydp(:), yinit(:), yp(:), &
ypinit(:), ypwant(:), ywant(:)

! .. Executable Statements ..
Write (nout,*) ’D02LAF Example Program Results’

! Skip heading in data file
Read (nin,*)

! neq: number of second-order ordinary differential equations
Read (nin,*) nwant
Allocate (rwork(lrwork),thres(neq),thresp(neq),y(neq),ydp(neq), &

yinit(neq),yp(neq),ypinit(neq),ypwant(nwant),ywant(nwant))
Read (nin,*) high, onestp
Read (nin,*) tinc

! Initial conditions
Read (nin,*) tstart, tend
Read (nin,*) yinit(1:neq)
Read (nin,*) ypinit(1:neq)

loop1: Do itol = 4, 5
tol = 10.0_nag_wp**(-itol)
Write (nout,*)

! Call D02LXF with default THRES,THRESP,MAXSTP and H

thres(1) = zero
thresp(1) = zero
h = zero
maxstp = 0
start = .True.

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02lxf(neq,h,tol,thres,thresp,maxstp,start,onestp,high,rwork, &

lrwork,ifail)

Write (nout,99999) ’Calculation with TOL = ’, tol
Write (nout,99995)(i,i=1,neq)

! Set initial values

y(1:neq) = yinit(1:neq)
yp(1:neq) = ypinit(1:neq)
t = tstart
tnext = t + tinc
Write (nout,99998) t, y(1:neq)

! Loop point for onestep mode
loop2: Do

ifail = -1

D02LAF NAG Library Manual

D02LAF.6 Mark 25

Call d02laf(fcn,neq,t,tend,y,yp,ydp,rwork,lrwork,ifail)

If (ifail>0) Then
Write (nout,99997) ifail, t
Exit loop1

End If

! Loop point for interpolation
Do While (tnext<=t)

ifail = 0
Call d02lzf(neq,t,y,yp,neq,tnext,ywant,ypwant,rwork,lrwork,ifail)

Write (nout,99998) tnext, ywant(1:neq)
tnext = tnext + tinc

End Do

If (t>=tend) Exit loop2

End Do loop2

ifail = 0
Call d02lyf(neq,hnext,hused,hstart,nsucc,nfail,natt,thres,thresp, &

rwork,lrwork,ifail)

Write (nout,*)
Write (nout,99996) ’ Number of successful steps = ’, nsucc
Write (nout,99996) ’ Number of failed steps = ’, nfail

End Do loop1

99999 Format (1X,A,1P,E9.1)
99998 Format (1X,F5.1,2(2X,F9.5))
99997 Format (/1X,’D02LAF returned with IFAIL = ’,I2,’ at T = ’,1P,E10.3)
99996 Format (1X,A,I5)
99995 Format (/’ T ’,2(’ Y(’,I1,’) ’))

End Program d02lafe

10.2 Program Data

D02LAF Example Program Data
2 : nwant
.FALSE. .TRUE. : high, onestp
2.0 : tinc
0.0 20.0 : tstart, tend
0.5 0.0 : yinit
0.0 1.73205080756887729352 : ypinit

10.3 Program Results

D02LAF Example Program Results

Calculation with TOL = 1.0E-04

T Y(1) Y(2)
0.0 0.50000 0.00000
2.0 -1.20573 0.61357
4.0 -1.33476 -0.47685
6.0 0.35748 -0.44558
8.0 -1.03762 0.73022

10.0 -1.42617 -0.32658
12.0 0.05515 -0.72032
14.0 -0.82880 0.81788
16.0 -1.48103 -0.16788
18.0 -0.26719 -0.84223
20.0 -0.57803 0.86339

Number of successful steps = 108
Number of failed steps = 16

D02 – Ordinary Differential D02LAF

Mark 25 D02LAF.7

Calculation with TOL = 1.0E-05

T Y(1) Y(2)
0.0 0.50000 0.00000
2.0 -1.20573 0.61357
4.0 -1.33476 -0.47685
6.0 0.35748 -0.44558
8.0 -1.03762 0.73022

10.0 -1.42617 -0.32658
12.0 0.05516 -0.72031
14.0 -0.82880 0.81787
16.0 -1.48103 -0.16789
18.0 -0.26718 -0.84223
20.0 -0.57804 0.86338

Number of successful steps = 169
Number of failed steps = 15

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

y

x

Example Program
Second-order ODE Solution using Runge-Kutta-Nystrom
The Two-body Problem (using shifts to distinguish orbits)

o 1st orbit
o 2nd orbit+(0,0.1)
o 3rd orbit+(0,0.2)

1
2
3

D02LAF NAG Library Manual

D02LAF.8 (last) Mark 25

	D02LAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Brankin et al. (1989)
	Dormand et al. (1986a)
	Dormand et al. (1986b)

	5 Parameters
	FCN
	NEQ
	T
	Y
	F

	NEQ
	T
	TEND
	Y
	YP
	YDP
	RWORK
	LRWORK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

