
NAG Library Routine Document

D02HAF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02HAF solves a two-point boundary value problem for a system of ordinary differential equations,
using a Runge–Kutta–Merson method and a Newton iteration in a shooting and matching technique.

2 Specification

SUBROUTINE D02HAF (U, V, N, A, B, TOL, FCN, SOLN, M1, W, SDW, IFAIL)

INTEGER N, M1, SDW, IFAIL
REAL (KIND=nag_wp) U(N,2), V(N,2), A, B, TOL, SOLN(N,M1), W(N,SDW)
EXTERNAL FCN

3 Description

D02HAF solves a two-point boundary value problem for a system of n ordinary differential equations in
the range a; b. The system is written in the form:

y0i ¼ fi x; y1; y2; . . . ; ynð Þ; i ¼ 1; 2; . . . ;n ð1Þ

and the derivatives fi are evaluated by FCN. Initially, n boundary values of the variables yi must be
specified, some at a and some at b. You must supply estimates of the remaining n boundary values
(called parameters below); the subroutine corrects these by a form of Newton iteration. It also calculates
the complete solution on an equispaced mesh if required.

Starting from the known and estimated values of yi at a, the subroutine integrates the equations from a
to b (using a Runge–Kutta–Merson method). The differences between the values of yi at b from
integration and those specified initially should be zero for the true solution. (These differences are called
residuals below.) The subroutine uses a generalized Newton method to reduce the residuals to zero, by
calculating corrections to the estimated boundary values. This process is repeated iteratively until
convergence is obtained, or until the routine can no longer reduce the residuals. See Hall and Watt
(1976) for a simple discussion of shooting and matching techniques.

4 References

Hall G and Watt J M (ed.) (1976) Modern Numerical Methods for Ordinary Differential Equations
Clarendon Press, Oxford

5 Parameters

1: UðN; 2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: Uði; 1Þ must be set to the known or estimated value of yi at a and Uði; 2Þ must be set to
the known or estimated value of yi at b, for i ¼ 1; 2; . . . ;n.

On exit: the known values unaltered, and corrected values of the estimates, unless an error has
occurred. If an error has occurred, U contains the known values and the latest values of the
estimates.

D02 – Ordinary Differential D02HAF

Mark 25 D02HAF.1

2: VðN; 2Þ – REAL (KIND=nag_wp) array Input

On entry: Vði; jÞ must be set to 0:0 if Uði; jÞ is a known value and to 1:0 if Uði; jÞ is an estimated
value, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2.

Constraint: precisely n of the Vði; jÞ must be set to 0:0, i.e., precisely n of the Uði; jÞ must be
known values, and these must not be all at a or all at b.

3: N – INTEGER Input

On entry: n, the number of equations.

Constraint: N � 1.

4: A – REAL (KIND=nag_wp) Input

On entry: a, the initial point of the interval of integration.

5: B – REAL (KIND=nag_wp) Input

On entry: b, the final point of the interval of integration.

6: TOL – REAL (KIND=nag_wp) Input

On entry: must be set to a small quantity suitable for:

(a) testing the local error in yi during integration,

(b) testing for the convergence of yi at b,

(c) calculating the perturbation in estimated boundary values for yi, which are used to obtain the
approximate derivatives of the residuals for use in the Newton iteration.

You are advised to check your results by varying TOL.

Constraint: TOL > 0:0.

7: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y0i), for i ¼ 1; 2; . . . ; n, at a general point
x.

The specification of FCN is:

SUBROUTINE FCN (X, Y, F)

REAL (KIND=nag_wp) X, Y(*), F(*)

In the description of the parameters of D02HAF below, n denotes the actual value of N in the
call of D02HAF.

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the argument.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the argument.

3: Fð�Þ – REAL (KIND=nag_wp) array Output

On exit: the values of fi xð Þ, for i ¼ 1; 2; . . . ;n.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02HAF is called. Parameters denoted as Input must not be changed by
this procedure.

D02HAF NAG Library Manual

D02HAF.2 Mark 25

8: SOLNðN;M1Þ – REAL (KIND=nag_wp) array Output

On exit: the solution when M1 > 1.

9: M1 – INTEGER Input

On entry: a value which controls output.

M1 ¼ 1
The final solution is not evaluated.

M1 > 1
The final values of yi at interval b� að Þ= M1� 1ð Þ are calculated and stored in the array
SOLN by columns, starting with values yi at a stored in SOLNði; 1Þ, for i ¼ 1; 2; . . . ; n.

Constraint: M1 � 1.

10: WðN; SDWÞ – REAL (KIND=nag_wp) array Output

On exit: if IFAIL ¼ 2, 3, 4 or 5, Wði; 1Þ, for i ¼ 1; 2; . . . ;n, contains the solution at the point
where the integration fails and the point of failure is returned in Wð1; 2Þ.

11: SDW – INTEGER Input

On entry: the second dimension of the array W as declared in the (sub)program from which
D02HAF is called.

Constraint: SDW � 3Nþ 17þmax 11;Nð Þ.

12: IFAIL – INTEGER Input/Output

For this routine, the normal use of IFAIL is extended to control the printing of error and warning
messages as well as specifying hard or soft failure (see Section 3.3 in the Essential Introduction).

On entry: IFAIL must be set to a value with the decimal expansion cba, where each of the decimal
digits c, b and a must have a value of 0 or 1.

a ¼ 0 specifies hard failure, otherwise soft failure;

b ¼ 0 suppresses error messages, otherwise error messages will be printed (see Section 6);

c ¼ 0 suppresses warning messages, otherwise warning messages will be printed (see Section 6).

The recommended value for inexperienced users is 110 (i.e., hard failure with all messages
printed).

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

One or more of the parameters V, N, M1, SDW, or TOL is incorrectly set.

IFAIL ¼ 2

The step length for the integration is too short whilst calculating the residual (see Section 9).

IFAIL ¼ 3

No initial step length could be chosen for the integration whilst calculating the residual.

D02 – Ordinary Differential D02HAF

Mark 25 D02HAF.3

Note: IFAIL ¼ 2 or 3 can occur due to choosing too small a value for TOL or due to choosing the
wrong direction of integration. Try varying TOL and interchanging a and b. These error exits can also
occur for very poor initial estimates of the unknown initial values and, in extreme cases, because
D02HAF cannot be used to solve the problem posed.

IFAIL ¼ 4

As for IFAIL ¼ 2 but the error occurred when calculating the Jacobian of the derivatives of the
residuals with respect to the parameters.

IFAIL ¼ 5

As for IFAIL ¼ 3 but the error occurred when calculating the derivatives of the residuals with
respect to the parameters.

IFAIL ¼ 6

The calculated Jacobian has an insignificant column.

Note: IFAIL ¼ 4, 5 or 6 usually indicate a badly scaled problem. You may vary the size of TOL or
change to one of the more general routines D02HBF or D02SAF which afford more control over the
calculations.

IFAIL ¼ 7

The linear algebra routine (F08KBF (DGESVD)) used has failed. This error exit should not occur
and can be avoided by changing the estimated initial values.

IFAIL ¼ 8

The Newton iteration has failed to converge.

Note: IFAIL ¼ 8 can indicate poor initial estimates or a very difficult problem. Consider varying TOL if
the residuals are small in the monitoring output. If the residuals are large try varying the initial estimates.

IFAIL ¼ 9
IFAIL ¼ 10
IFAIL ¼ 11
IFAIL ¼ 12
IFAIL ¼ 13

Indicates that a serious error has occurred in an internal call. Check all array subscripts and
subroutine parameter lists in calls to D02HAF. Seek expert help.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

D02HAF NAG Library Manual

D02HAF.4 Mark 25

7 Accuracy

If the process converges, the accuracy to which the unknown parameters are determined is usually close
to that specified by you; the solution, if requested, may be determined to a required accuracy by varying
TOL.

8 Parallelism and Performance

D02HAF is not threaded by NAG in any implementation.

D02HAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The time taken by D02HAF depends on the complexity of the system, and on the number of iterations
required. In practice, integration of the differential equations is by far the most costly process involved.

Wherever it occurs in the routine, the error parameter TOL is used in ‘mixed’ form; that is TOL always
occurs in expressions of the form TOL� 1þ yij jð Þ. Though not ideal for every application, it is expected
that this mixture of absolute and relative error testing will be adequate for most purposes.

You are strongly recommended to set IFAIL to obtain self-explanatory error messages, and also
monitoring information about the course of the computation. You may select the unit numbers on which
this output is to appear by calls of X04AAF (for error messages) or X04ABF (for monitoring
information) – see Section 10 for an example. Otherwise the default unit numbers will be used, as
specified in the Users’ Note. The monitoring information produced at each iteration includes the current
parameter values, the residuals and 2-norms: a basic norm and a current norm. At each iteration the aim
is to find parameter values which make the current norm less than the basic norm. Both these norms
should tend to zero as should the residuals. (They would all be zero if the exact parameters were used as
input.) For more details, you may consult the specification of D02SAF, and especially the description of
the parameter MONIT there.

The computing time for integrating the differential equations can sometimes depend critically on the
quality of the initial estimates. If it seems that too much computing time is required and, in particular, if
the values of the residuals printed by the monitoring routine are much larger than the expected values of
the solution at b, then the coding of FCN should be checked for errors. If no errors can be found, an
independent attempt should be made to improve the initial estimates. In practical problems it is not
uncommon for the differential equation to have a singular point at one or both ends of the range.
Suppose a is a singular point; then the derivatives y0i in (1) (in Section 3) cannot be evaluated at a,
usually because one or more of the expressions for fi give overflow. In such a case it is necessary for
you to take a a short distance away from the singularity, and to find values for yi at the new value of a
(e.g., use the first one or two terms of an analytical (power series) solution). You should experiment with
the new position of a; if it is taken too close to the singular point, the derivatives fi will be inaccurate,
and the routine may sometimes fail with IFAIL ¼ 2 or 3 or, in extreme cases, with an overflow
condition. A more general treatment of singular solutions is provided by the subroutine D02HBF.

Another difficulty which often arises in practice is the case when one end of the range, b say, is at
infinity. You must approximate the end point by taking a finite value for b, which is obtained by
estimating where the solution will reach its asymptotic state. The estimate can be checked by repeating
the calculation with a larger value of b. If b is very large, and if the matching point is also at b, the
numerical solution may suffer a considerable loss of accuracy in integrating across the range, and the
program may fail with IFAIL ¼ 6 or 8. (In the former case, solutions from all initial values at a are
tending to the same curve at infinity.) The simplest remedy is to try to solve the equations with a smaller
value of b, and then to increase b in stages, using each solution to give boundary value estimates for the

D02 – Ordinary Differential D02HAF

Mark 25 D02HAF.5

next calculation. For problems where some terms in the asymptotic form of the solution are known,
D02HBF will be more successful.

If the unknown quantities are not boundary values, but are eigenvalues or the length of the range or
some other parameters occurring in the differential equations, D02HBF may be used.

10 Example

This example finds the angle at which a projectile must be fired for a given range.

The differential equations are:

y0 ¼ tan�

v0 ¼ �0:032 tan�

v
� 0:02v

cos�

�0 ¼ �0:032

v2
;

with the following boundary conditions:

y ¼ 0; v ¼ 0:5 at x ¼ 0;

y ¼ 0 at x ¼ 5:

The remaining boundary conditions are estimated as:

� ¼ 1:15 at x ¼ 0;

� ¼ 1:2; v ¼ 0:46 at x ¼ 5:

We write y ¼ Z 1ð Þ, v ¼ Z 2ð Þ, � ¼ Z 3ð Þ. To check the accuracy of the results the problem is solved twice
with TOL ¼ 5.0E�3 and 5:0E�4 respectively. Note the call to X04ABF before the call to D02HAF.

10.1 Program Text

! D02HAF Example Program Text
! Mark 25 Release. NAG Copyright 2014.

Module d02hafe_mod

! D02HAF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Integer, Parameter, Public :: iset = 1, n = 3, nin = 5, nout = 6
Integer, Parameter, Public :: sdw = 3*n + 17 + max(11,n)

! .. Intrinsic Procedures ..
Intrinsic :: max

Contains
Subroutine fcn(x,y,f)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(*)
Real (Kind=nag_wp), Intent (In) :: y(*)

! .. Intrinsic Procedures ..
Intrinsic :: cos, tan

! .. Executable Statements ..

D02HAF NAG Library Manual

D02HAF.6 Mark 25

f(1) = tan(y(3))
f(2) = -0.032_nag_wp*tan(y(3))/y(2) - 0.02_nag_wp*y(2)/cos(y(3))
f(3) = -0.032_nag_wp/y(2)**2
Return

End Subroutine fcn
End Module d02hafe_mod

Program d02hafe

! D02HAF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02haf, nag_wp, x04abf
Use d02hafe_mod, Only: fcn, iset, n, nin, nout, one, sdw, zero

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: a, b, dx, tol
Integer :: i, ifail, l, m1, outchn

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: soln(:,:), x(:)
Real (Kind=nag_wp) :: u(n,2), v(n,2), w(n,sdw)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D02HAF Example Program Results’

! Skip heading in data file
Read (nin,*)

! m1: solution is returned and printed for m1-1 grid points on [a, b].
Read (nin,*) m1
Allocate (soln(n,m1),x(m1))

! a: left-hand boundary point, b: right-hand boundary point.
Read (nin,*) a, b

! Evaluate solution points x.
x(1) = a
dx = (b-a)/real(m1-1,kind=nag_wp)
Do i = 2, m1 - 1

x(i) = x(i-1) + dx
End Do
x(m1) = b

! Set output channel for monitoring information.
outchn = nout
Call x04abf(iset,outchn)

! Flag known (zero) and estimated (one) values in u
v(1:2,1:2) = zero
v(2,2) = one
v(3,1:2) = one

! Set known values of u
u(1,1:2) = zero
u(2,1) = 0.5_nag_wp

loop: Do l = 4, 5
tol = 5.0_nag_wp*10.0_nag_wp**(-l)
Write (nout,*)

! Set estimates of u
u(2,2) = 0.46_nag_wp
u(3,1) = 1.15_nag_wp
u(3,2) = -1.2_nag_wp

! ifail: behaviour on error exit
! =1 for quiet-soft exit
! * Set ifail to 111 to obtain monitoring information *

ifail = 1
Call d02haf(u,v,n,a,b,tol,fcn,soln,m1,w,sdw,ifail)

If (ifail>=0) Then
Write (nout,99999) ’Results with TOL = ’, tol
Write (nout,*)

D02 – Ordinary Differential D02HAF

Mark 25 D02HAF.7

If (ifail==0) Then
Write (nout,*) ’ X-value and final solution’
Do i = 1, m1

If (l==4) Then
Write (nout,99998) x(i), soln(1:n,i)

Else
Write (nout,99997) x(i), soln(1:n,i)

End If
End Do

Else
Write (nout,99996) ’ IFAIL =’, ifail

End If
Else

Write (nout,99995) ifail
Exit loop

End If
End Do loop

99999 Format (1X,A,E10.3)
99998 Format (1X,F4.1,3(1X,F9.3))
99997 Format (1X,F4.1,1X,3F10.4)
99996 Format (1X,A,I4)
99995 Format (1X/1X,’ ** D02HAF returned with IFAIL = ’,I5)

End Program d02hafe

10.2 Program Data

D02HAF Example Program Data
6 : m1
0.0 5.0 : a, b

10.3 Program Results

D02HAF Example Program Results

Results with TOL = 0.500E-03

X-value and final solution
0.0 0.000 0.500 1.168
1.0 1.918 0.334 0.975
2.0 2.928 0.207 0.493
3.0 2.977 0.196 -0.419
4.0 2.021 0.310 -0.975
5.0 -0.000 0.460 -1.201

Results with TOL = 0.500E-04

X-value and final solution
0.0 0.0000 0.5000 1.1681
1.0 1.9176 0.3343 0.9749
2.0 2.9281 0.2070 0.4929
3.0 2.9771 0.1955 -0.4195
4.0 2.0210 0.3095 -0.9752
5.0 -0.0000 0.4597 -1.2014

D02HAF NAG Library Manual

D02HAF.8 Mark 25

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1 2 3 4 5

So
lu

ti
on

x

Example Program
Solution of Two-point Boundary-value Problem

using Runge-Kutta-Merson and Newton Correction in a Shooting Method

height

velocity

angle

D02 – Ordinary Differential D02HAF

Mark 25 D02HAF.9 (last)

	D02HAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Hall and Watt (1976)

	5 Parameters
	U
	V
	N
	A
	B
	TOL
	FCN
	X
	Y
	F

	SOLN
	M1
	W
	SDW
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=10
	IFAIL=11
	IFAIL=12
	IFAIL=13
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

