NAG Library Routine Document
 D02HAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

D02HAF solves a two-point boundary value problem for a system of ordinary differential equations, using a Runge-Kutta-Merson method and a Newton iteration in a shooting and matching technique.

2 Specification

```
SUBROUTINE DO2HAF (U, V, N, A, B, TOL, FCN, SOLN, M1, W, SDW, IFAIL)
INTEGER N, M1, SDW, IFAIL
REAL (KIND=nag_wp) U(N,2), V(N,2), A, B, TOL, SOLN(N,M1), W(N,SDW)
EXTERNAL
```


3 Description

D02HAF solves a two-point boundary value problem for a system of n ordinary differential equations in the range a, b. The system is written in the form:

$$
\begin{equation*}
y_{i}^{\prime}=f_{i}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right), \quad i=1,2, \ldots, n \tag{1}
\end{equation*}
$$

and the derivatives f_{i} are evaluated by FCN. Initially, n boundary values of the variables y_{i} must be specified, some at a and some at b. You must supply estimates of the remaining n boundary values (called parameters below); the subroutine corrects these by a form of Newton iteration. It also calculates the complete solution on an equispaced mesh if required.
Starting from the known and estimated values of y_{i} at a, the subroutine integrates the equations from a to b (using a Runge-Kutta-Merson method). The differences between the values of y_{i} at b from integration and those specified initially should be zero for the true solution. (These differences are called residuals below.) The subroutine uses a generalized Newton method to reduce the residuals to zero, by calculating corrections to the estimated boundary values. This process is repeated iteratively until convergence is obtained, or until the routine can no longer reduce the residuals. See Hall and Watt (1976) for a simple discussion of shooting and matching techniques.

4 References

Hall G and Watt J M (ed.) (1976) Modern Numerical Methods for Ordinary Differential Equations Clarendon Press, Oxford

5 Parameters

1: $\quad \mathrm{U}(\mathrm{N}, 2)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Input/Output
On entry: $\mathrm{U}(i, 1)$ must be set to the known or estimated value of y_{i} at a and $\mathrm{U}(i, 2)$ must be set to the known or estimated value of y_{i} at b, for $i=1,2, \ldots, n$.

On exit: the known values unaltered, and corrected values of the estimates, unless an error has occurred. If an error has occurred, U contains the known values and the latest values of the estimates.

2: $\quad \mathrm{V}(\mathrm{N}, 2)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input
On entry: $\mathrm{V}(i, j)$ must be set to 0.0 if $\mathrm{U}(i, j)$ is a known value and to 1.0 if $\mathrm{U}(i, j)$ is an estimated value, for $i=1,2, \ldots, n$ and $j=1,2$.
Constraint: precisely n of the $\mathrm{V}(i, j)$ must be set to 0.0 , i.e., precisely n of the $\mathrm{U}(i, j)$ must be known values, and these must not be all at a or all at b.

3: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the number of equations.
Constraint: $\mathrm{N} \geq 1$.
4: $\quad \mathrm{A}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$
Input
On entry: a, the initial point of the interval of integration.
5: $\quad \mathrm{B}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$
Input
On entry: b, the final point of the interval of integration.
6: \quad TOL - REAL (KIND=nag_wp)
Input
On entry: must be set to a small quantity suitable for:
(a) testing the local error in y_{i} during integration,
(b) testing for the convergence of y_{i} at b,
(c) calculating the perturbation in estimated boundary values for y_{i}, which are used to obtain the approximate derivatives of the residuals for use in the Newton iteration.

You are advised to check your results by varying TOL.
Constraint: TOL >0.0.
7: \quad FCN - SUBROUTINE, supplied by the user.
External Procedure
FCN must evaluate the functions f_{i} (i.e., the derivatives y_{i}^{\prime}), for $i=1,2, \ldots, n$, at a general point x.

```
The specification of FCN is:
SUBROUTINE FCN (X, Y, F)
REAL (KIND=nag_wp) X, Y(*), F(*)
In the description of the parameters of D02HAF below, \(n\) denotes the actual value of N in the call of D02HAF.
1: X - REAL (KIND=nag_wp) Input
On entry: \(x\), the value of the argument.
2: \(\mathrm{Y}(*)-\) REAL (KIND=nag_wp) array Input
On entry: \(y_{i}\), for \(i=1,2, \ldots, n\), the value of the argument.
3: \(\quad \mathrm{F}(*)\) - REAL (KIND=nag_wp) array
Output
On exit: the values of \(f_{i}(x)\), for \(i=1,2, \ldots, n\).
```

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D02HAF is called. Parameters denoted as Input must not be changed by this procedure.

8: $\quad \operatorname{SOLN}(\mathrm{N}, \mathrm{M} 1)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Output
On exit: the solution when $\mathrm{M} 1>1$.

9: M1 - INTEGER
Input
On entry: a value which controls output.
$\mathrm{M} 1=1$
The final solution is not evaluated.
M1 >1
The final values of y_{i} at interval $(b-a) /(\mathrm{M} 1-1)$ are calculated and stored in the array SOLN by columns, starting with values y_{i} at a stored in $\operatorname{SOLN}(i, 1)$, for $i=1,2, \ldots, n$.
Constraint: $\mathrm{M} 1 \geq 1$.
10: $\mathrm{W}(\mathrm{N}, \mathrm{SDW})-$ REAL (KIND=nag_wp) array
Output
On exit: if IFAIL $=2,3,4$ or $5, \mathrm{~W}(i, 1)$, for $i=1,2, \ldots, n$, contains the solution at the point where the integration fails and the point of failure is returned in $\mathrm{W}(1,2)$.

11: SDW - INTEGER
Input
On entry: the second dimension of the array W as declared in the (sub)program from which D02HAF is called.
Constraint: $\mathrm{SDW} \geq 3 \mathrm{~N}+17+\max (11, \mathrm{~N})$.
12: IFAIL - INTEGER
Input/Output
For this routine, the normal use of IFAIL is extended to control the printing of error and warning messages as well as specifying hard or soft failure (see Section 3.3 in the Essential Introduction).
On entry: IFAIL must be set to a value with the decimal expansion $c b a$, where each of the decimal digits c, b and a must have a value of 0 or 1 .
$a=0$ specifies hard failure, otherwise soft failure;
$b=0$ suppresses error messages, otherwise error messages will be printed (see Section 6);
$c=0$ suppresses warning messages, otherwise warning messages will be printed (see Section 6).
The recommended value for inexperienced users is 110 (i.e., hard failure with all messages printed).

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
One or more of the parameters V, N, M1, SDW, or TOL is incorrectly set.
IFAIL $=2$
The step length for the integration is too short whilst calculating the residual (see Section 9).
IFAIL $=3$
No initial step length could be chosen for the integration whilst calculating the residual.

Note: IFAIL $=2$ or 3 can occur due to choosing too small a value for TOL or due to choosing the wrong direction of integration. Try varying TOL and interchanging a and b. These error exits can also occur for very poor initial estimates of the unknown initial values and, in extreme cases, because D02HAF cannot be used to solve the problem posed.

IFAIL $=4$
As for IFAIL $=2$ but the error occurred when calculating the Jacobian of the derivatives of the residuals with respect to the parameters.

IFAIL $=5$
As for IFAIL $=3$ but the error occurred when calculating the derivatives of the residuals with respect to the parameters.

IFAIL $=6$
The calculated Jacobian has an insignificant column.
Note: IFAIL $=4,5$ or 6 usually indicate a badly scaled problem. You may vary the size of TOL or change to one of the more general routines D02HBF or D02SAF which afford more control over the calculations.

IFAIL $=7$
The linear algebra routine (F08KBF (DGESVD)) used has failed. This error exit should not occur and can be avoided by changing the estimated initial values.

IFAIL $=8$
The Newton iteration has failed to converge.
Note: IFAIL $=8$ can indicate poor initial estimates or a very difficult problem. Consider varying TOL if the residuals are small in the monitoring output. If the residuals are large try varying the initial estimates.

IFAIL $=9$
IFAIL $=10$
IFAIL $=11$
IFAIL $=12$
IFAIL $=13$
Indicates that a serious error has occurred in an internal call. Check all array subscripts and subroutine parameter lists in calls to D02HAF. Seek expert help.

IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

$7 \quad$ Accuracy

If the process converges, the accuracy to which the unknown parameters are determined is usually close to that specified by you; the solution, if requested, may be determined to a required accuracy by varying TOL.

8 Parallelism and Performance

D02HAF is not threaded by NAG in any implementation.
D02HAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The time taken by D02HAF depends on the complexity of the system, and on the number of iterations required. In practice, integration of the differential equations is by far the most costly process involved.

Wherever it occurs in the routine, the error parameter TOL is used in 'mixed' form; that is TOL always occurs in expressions of the form TOL $\times\left(1+\left|y_{i}\right|\right)$. Though not ideal for every application, it is expected that this mixture of absolute and relative error testing will be adequate for most purposes.

You are strongly recommended to set IFAIL to obtain self-explanatory error messages, and also monitoring information about the course of the computation. You may select the unit numbers on which this output is to appear by calls of X04AAF (for error messages) or X04ABF (for monitoring information) - see Section 10 for an example. Otherwise the default unit numbers will be used, as specified in the Users' Note. The monitoring information produced at each iteration includes the current parameter values, the residuals and 2-norms: a basic norm and a current norm. At each iteration the aim is to find parameter values which make the current norm less than the basic norm. Both these norms should tend to zero as should the residuals. (They would all be zero if the exact parameters were used as input.) For more details, you may consult the specification of D02SAF, and especially the description of the parameter MONIT there.

The computing time for integrating the differential equations can sometimes depend critically on the quality of the initial estimates. If it seems that too much computing time is required and, in particular, if the values of the residuals printed by the monitoring routine are much larger than the expected values of the solution at b, then the coding of FCN should be checked for errors. If no errors can be found, an independent attempt should be made to improve the initial estimates. In practical problems it is not uncommon for the differential equation to have a singular point at one or both ends of the range. Suppose a is a singular point; then the derivatives y_{i}^{\prime} in (1) (in Section 3) cannot be evaluated at a, usually because one or more of the expressions for f_{i} give overflow. In such a case it is necessary for you to take a a short distance away from the singularity, and to find values for y_{i} at the new value of a (e.g., use the first one or two terms of an analytical (power series) solution). You should experiment with the new position of a; if it is taken too close to the singular point, the derivatives f_{i} will be inaccurate, and the routine may sometimes fail with IFAIL $=2$ or 3 or, in extreme cases, with an overflow condition. A more general treatment of singular solutions is provided by the subroutine D02HBF.

Another difficulty which often arises in practice is the case when one end of the range, b say, is at infinity. You must approximate the end point by taking a finite value for b, which is obtained by estimating where the solution will reach its asymptotic state. The estimate can be checked by repeating the calculation with a larger value of b. If b is very large, and if the matching point is also at b, the numerical solution may suffer a considerable loss of accuracy in integrating across the range, and the program may fail with IFAIL $=6$ or 8 . (In the former case, solutions from all initial values at a are tending to the same curve at infinity.) The simplest remedy is to try to solve the equations with a smaller value of b, and then to increase b in stages, using each solution to give boundary value estimates for the
next calculation. For problems where some terms in the asymptotic form of the solution are known, D02HBF will be more successful.

If the unknown quantities are not boundary values, but are eigenvalues or the length of the range or some other parameters occurring in the differential equations, D02HBF may be used.

10 Example

This example finds the angle at which a projectile must be fired for a given range.
The differential equations are:

$$
\begin{aligned}
y^{\prime} & =\tan \phi \\
v^{\prime} & =\frac{-0.032 \tan \phi}{v}-\frac{0.02 v}{\cos \phi} \\
\phi^{\prime} & =\frac{-0.032}{v^{2}}
\end{aligned}
$$

with the following boundary conditions:

$$
\begin{aligned}
& y=0, \quad v=0.5 \quad \text { at } \quad x=0, \\
& y=0 \quad \text { at } \quad x=5 .
\end{aligned}
$$

The remaining boundary conditions are estimated as:

$$
\begin{array}{ll}
\phi=1.15 & \text { at } \quad x=0 \\
\phi=1.2, \quad v=0.46 & \text { at } \quad x=5 .
\end{array}
$$

We write $y=\mathrm{Z}(1), v=\mathrm{Z}(2), \phi=\mathrm{Z}(3)$. To check the accuracy of the results the problem is solved twice with $\mathrm{TOL}=5.0 \mathrm{E}-3$ and $5.0 \mathrm{E}-4$ respectively. Note the call to X 04 ABF before the call to D02HAF.

10.1 Program Text

```
D02HAF Example Program Text
Mark 25 Release. NAG Copyright 2014.
    Module dO2hafe_mod
    D02HAF Example Program Module:
                Parameters and User-defined Routines
    .. Use Statements ..
    Use nag_library, Only: nag_wp
    .. Implicit None Statement ..
    Implicit None
.. Accessibility Statements ..
    Private
    Public :: fcn
    .. Parameters ..
    Real (Kind=nag_wp), Parameter, Public :: one = 1.0_nag_wp
    Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nnag_wp
    Integer, Parameter, Public :: iset = 1, n = 3, nin = 5, nout = 6
    Integer, Parameter, Public : : sdw = 3*n + 17 + max (11,n)
    .. Intrinsic Procedures ..
    Intrinsic :: max
    Contains
    Subroutine fcn(x,y,f)
! .. Scalar Arguments ..
            Real (Kind=nag_wp), Intent (In) :: x
! .. Array Arguments ..
            Real (Kind=nag_wp), Intent (Out) :: f(*)
            Real (Kind=nag_wp), Intent (In) :: y(*)
            .. Intrinsic Procedures ..
            Intrinsic :: cos, tan
            .. Executable Statements ..
```

```
        f(1) = tan(y(3))
        f(2) = -0.032_nag_wp*tan(y(3))/y(2) - 0.02__nag_wp*y(2)/cos(y(3))
        f(3)= -0.032_nag_wp/y(2)**2
        Return
    End Subroutine fcn
    End Module dO2hafe_mod
    Program d02hafe
    DO2HAF Example Main Program
    .. Use Statements ..
    Use nag_library, Only: d02haf, nag_wp, x04abf
    Use dO2hafe_mod, Only: fcn, iset, n, nin, nout, one, sdw, zero
! .. Implicit None Statement ..
    Implicit None
.. Local Scalars ..
    Real (Kind=nag_wp) :: a, b, dx, tol
    Integer :: i, ifail, l, m1, outchn
! .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: soln(:,:), x(:)
    Real (Kind=nag_wp) :: u(n,2), v(n,2), w(n,sdw)
! .. Intrinsic Procedures ..
    Intrinsic :: real
! .. Executable Statements ..
    Write (nout,*) 'DO2HAF Example Program Results'
! Skip heading in data file
    Read (nin,*)
! ml: solution is returned and printed for ml-1 grid points on [a, b].
    Read (nin,*) m1
    Allocate (soln(n,m1),x(m1))
! a: left-hand boundary point, b: right-hand boundary point.
    Read (nin,*) a, b
! Evaluate solution points x.
    x(1) = a
    dx = (b-a)/real(m1-1,kind=nag_wp)
    Do i = 2, m1 - 1
        x(i) = x(i-1) + dx
    End Do
    x(m1) = b
! Set output channel for monitoring information.
    outchn = nout
    Call x04abf(iset,outchn)
! Flag known (zero) and estimated (one) values in u
    v(1:2,1:2) = zero
    v(2,2) = one
    v(3,1:2) = one
! Set known values of u
    u(1,1:2) = zero
    u(2,1) = 0.5_nag_wp
loop: Do l = 4, 5
        tol = 5.0_nag_wp*10.0_nag_wp**(-1)
        Write (nout,*)
! Set estimates of u
        u(2,2) = 0.46_nag_wp
        u(3,1) = 1.15_nag_wp
        u( 3,2) = -1.2_nag_wp
        ifail: behaviour on error exit
            =1 for quiet-soft exit
        * Set ifail to }111\mathrm{ to obtain monitoring information *
        ifail = 1
        Call dO2haf(u,v,n,a,b,tol,fcn,soln,ml,w,sdw,ifail)
        If (ifail>=0) Then
        Write (nout,99999) 'Results with TOL = ', tol
        Write (nout,*)
```

```
            If (ifail==0) Then
                        Write (nout,*) ' X-value and final solution'
                        Do i = 1, ml
                        If (l==4) Then
                        Write (nout,99998) x(i), soln(1:n,i)
                    Else
                        Write (nout,99997) x(i), soln(1:n,i)
                    End If
            End Do
                Else
            Write (nout,99996) ' IFAIL =', ifail
            End If
        Else
            Write (nout,99995) ifail
            Exit loop
            End If
            End Do loop
99999 Format (1X,A,E10.3)
99998 Format (1X,F4.1,3(1X,F9.3))
99997 Format (1X,F4.1,1X,3F10.4)
9 9 9 9 6 ~ F o r m a t ~ ( 1 X , A , I 4 )
99995 Format (1X/IX,' ** DO2HAF returned with IFAIL = ',I5)
    End Program dO2hafe
```


10.2 Program Data

```
D02HAF Example Program Data
    6 : m
    0.0 5.0 : a, b
```


10.3 Program Results

DO2HAF Example Program Results			
Results with TOL $=0.500 \mathrm{E}-03$			
X-value and final solution			
0.0	0.000	0.500	1.168
1.0	1.918	0.334	0.975
2.0	2.928	0.207	0.493
3.0	2.977	0.196	-0.419
4.0	2.021	0.310	-0.975
5.0	-0.000	0.460	-1.201
Results with TOL $=0.500 \mathrm{E}-04$			
X-value and final solution			
0.0	0.0000	0.5000	1.1681
1.0	1.9176	0.3343	0.9749
2.0	2.9281	0.2070	0.4929
3.0	2.9771	0.1955	-0.4195
4.0	2.0210	0.3095	-0.9752
5.0	-0.0000	0.4597	-1.2014

Example Program

Solution of Two-point Boundary-value Problem
using Runge-Kutta-Merson and Newton Correction in a Shooting Method

