
NAG Library Routine Document

D02CJF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02CJF integrates a system of first-order ordinary differential equations over a range with suitable initial
conditions, using a variable-order, variable-step Adams’ method until a user-specified function, if
supplied, of the solution is zero, and returns the solution at points specified by you, if desired.

2 Specification

SUBROUTINE D02CJF (X, XEND, N, Y, FCN, TOL, RELABS, OUTPUT, G, W, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) X, XEND, Y(N), TOL, G, W(28+21*N)
CHARACTER(1) RELABS
EXTERNAL FCN, OUTPUT, G

3 Description

D02CJF advances the solution of a system of ordinary differential equations

y0i ¼ fi x; y1; y2; . . . ; ynð Þ; i ¼ 1; 2; . . . ;n;

from x ¼ X to x ¼ XEND using a variable-order, variable-step Adams’ method. The system is defined
by FCN, which evaluates fi in terms of x and y1; y2; . . . ; yn . The initial values of y1; y2; . . . ; yn must be
given at x ¼ X.

The solution is returned via OUTPUT at points specified by you, if desired: this solution is obtained by
C1 interpolation on solution values produced by the method. As the integration proceeds a check can be
made on the user-specified function g x; yð Þ to determine an interval where it changes sign. The position
of this sign change is then determined accurately by C1 interpolation to the solution. It is assumed that
g x; yð Þ is a continuous function of the variables, so that a solution of g x; yð Þ ¼ 0:0 can be determined by
searching for a change in sign in g x; yð Þ. The accuracy of the integration, the interpolation and,
indirectly, of the determination of the position where g x; yð Þ ¼ 0:0, is controlled by the parameters TOL
and RELABS.

For a description of Adams’ methods and their practical implementation see Hall and Watt (1976).

4 References

Hall G and Watt J M (ed.) (1976) Modern Numerical Methods for Ordinary Differential Equations
Clarendon Press, Oxford

5 Parameters

1: X – REAL (KIND=nag_wp) Input/Output

On entry: the initial value of the independent variable x.

Constraint: X 6¼ XEND.

On exit: if g is supplied by you, it contains the point where g x; yð Þ ¼ 0:0, unless g x; yð Þ 6¼ 0:0
anywhere on the range X to XEND, in which case, X will contain XEND. If g is not supplied by
you it contains XEND, unless an error has occurred, when it contains the value of x at the error.

D02 – Ordinary Differential D02CJF

Mark 25 D02CJF.1

2: XEND – REAL (KIND=nag_wp) Input

On entry: the final value of the independent variable. If XEND < X, integration will proceed in
the negative direction.

Constraint: XEND 6¼ X.

3: N – INTEGER Input

On entry: n, the number of differential equations.

Constraint: N � 1.

4: YðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of the solution y1; y2; . . . ; yn at x ¼ X.

On exit: the computed values of the solution at the final point x ¼ X.

5: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y0i) for given values of its arguments
x; y1; . . . ; yn .

The specification of FCN is:

SUBROUTINE FCN (X, Y, F)

REAL (KIND=nag_wp) X, Y(*), F(*)

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the independent variable.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the variable.

3: Fð�Þ – REAL (KIND=nag_wp) array Output

On exit: the value of fi, for i ¼ 1; 2; . . . ; n.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02CJF is called. Parameters denoted as Input must not be changed by
this procedure.

6: TOL – REAL (KIND=nag_wp) Input

On entry: a positive tolerance for controlling the error in the integration. Hence TOL affects the
determination of the position where g x; yð Þ ¼ 0:0, if g is supplied.

D02CJF has been designed so that, for most problems, a reduction in TOL leads to an
approximately proportional reduction in the error in the solution. However, the actual relation
between TOL and the accuracy achieved cannot be guaranteed. You are strongly recommended to
call D02CJF with more than one value for TOL and to compare the results obtained to estimate
their accuracy. In the absence of any prior knowledge, you might compare the results obtained by
calling D02CJF with TOL ¼ 10:0�p and TOL ¼ 10:0�p�1 where p correct decimal digits are
required in the solution.

Constraint: TOL > 0:0.

7: RELABS – CHARACTER(1) Input

On entry: the type of error control. At each step in the numerical solution an estimate of the local
error, est, is made. For the current step to be accepted the following condition must be satisfied:

D02CJF NAG Library Manual

D02CJF.2 Mark 25

est ¼
ffiXn

i¼1

ei= �r � yij j þ �að Þð Þ2
s

� 1:0

where �r and �a are defined by

RELABS �r �a
‘M’ TOL TOL
‘A’ 0:0 TOL
‘R’ TOL �
‘D’ TOL TOL

where � is a small machine-dependent number and ei is an estimate of the local error at yi,
computed internally. If the appropriate condition is not satisfied, the step size is reduced and the
solution is recomputed on the current step. If you wish to measure the error in the computed
solution in terms of the number of correct decimal places, then RELABS should be set to ‘A’ on
entry, whereas if the error requirement is in terms of the number of correct significant digits, then
RELABS should be set to ‘R’. If you prefer a mixed error test, then RELABS should be set to
‘M’, otherwise if you have no preference, RELABS should be set to the default ‘D’. Note that in
this case ‘D’ is taken to be ‘M’.

Constraint: RELABS ¼ M , A , R or D .

8: OUTPUT – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

OUTPUT permits access to intermediate values of the computed solution (for example to print or
plot them), at successive user-specified points. It is initially called by D02CJF with XSOL ¼ X
(the initial value of x). You must reset XSOL to the next point (between the current XSOL and
XEND) where OUTPUT is to be called, and so on at each call to OUTPUT. If, after a call to
OUTPUT, the reset point XSOL is beyond XEND, D02CJF will integrate to XEND with no
further calls to OUTPUT; if a call to OUTPUT is required at the point XSOL ¼ XEND, then
XSOL must be given precisely the value XEND.

The specification of OUTPUT is:

SUBROUTINE OUTPUT (XSOL, Y)

REAL (KIND=nag_wp) XSOL, Y(*)

1: XSOL – REAL (KIND=nag_wp) Input/Output

On entry: the output value of the independent variable x.

On exit: you must set XSOL to the next value of x at which OUTPUT is to be called.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: the computed solution at the point XSOL.

OUTPUT must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02CJF is called. Parameters denoted as Input must not be changed by
this procedure.

If you do not wish to access intermediate output, the actual parameter OUTPUT must be the
dummy routine D02CJX. (D02CJX is included in the NAG Library.)

9: G – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

G must evaluate the function g x; yð Þ for specified values x; y. It specifies the function g for which
the first position x where g x; yð Þ ¼ 0 is to be found.

D02 – Ordinary Differential D02CJF

Mark 25 D02CJF.3

The specification of G is:

FUNCTION G (X, Y)
REAL (KIND=nag_wp) G

REAL (KIND=nag_wp) X, Y(*)

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the independent variable.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the variable.

G must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program
from which D02CJF is called. Parameters denoted as Input must not be changed by this
procedure.

If you do not require the root-finding option, the actual parameter G must be the dummy routine
D02CJW. (D02CJW is included in the NAG Library.)

10: Wð28þ 21� NÞ – REAL (KIND=nag_wp) array Workspace

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TOL � 0:0,
or N � 0,
or RELABS 6¼ M , A , R or D ,
or X ¼ XEND.

IFAIL ¼ 2

With the given value of TOL, no further progress can be made across the integration range from
the current point x ¼ X. (See Section 9 for a discussion of this error exit.) The components
Yð1Þ;Yð2Þ; . . . ;YðNÞ contain the computed values of the solution at the current point x ¼ X. If
you have supplied g, then no point at which g x; yð Þ changes sign has been located up to the point
x ¼ X.

IFAIL ¼ 3

TOL is too small for D02CJF to take an initial step. X and Yð1Þ;Yð2Þ; . . . ;YðNÞ retain their
initial values.

D02CJF NAG Library Manual

D02CJF.4 Mark 25

IFAIL ¼ 4

XSOL has not been reset or XSOL lies behind X in the direction of integration, after the initial
call to OUTPUT, if the OUTPUT option was selected.

IFAIL ¼ 5

A value of XSOL returned by the OUTPUT has not been reset or lies behind the last value of
XSOL in the direction of integration, if the OUTPUT option was selected.

IFAIL ¼ 6

At no point in the range X to XEND did the function g x; yð Þ change sign, if g was supplied. It is
assumed that g x; yð Þ ¼ 0 has no solution.

IFAIL ¼ 7

A serious error has occurred in an internal call. Check all subroutine calls and array sizes. Seek
expert help.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

The accuracy of the computation of the solution vector Y may be controlled by varying the local error
tolerance TOL. In general, a decrease in local error tolerance should lead to an increase in accuracy. You
are advised to choose RELABS ¼ M unless you have a good reason for a different choice.

If the problem is a root-finding one, then the accuracy of the root determined will depend on the
properties of g x; yð Þ. You should try to code G without introducing any unnecessary cancellation errors.

8 Parallelism and Performance

Not applicable.

9 Further Comments

If more than one root is required then D02QFF should be used.

If D02CJF fails with IFAIL ¼ 3, then it can be called again with a larger value of TOL if this has not
already been tried. If the accuracy requested is really needed and cannot be obtained with this routine,
the system may be very stiff (see below) or so badly scaled that it cannot be solved to the required
accuracy.

If D02CJF fails with IFAIL ¼ 2, it is probable that it has been called with a value of TOL which is so
small that a solution cannot be obtained on the range X to XEND. This can happen for well-behaved
systems and very small values of TOL. You should, however, consider whether there is a more
fundamental difficulty. For example:

D02 – Ordinary Differential D02CJF

Mark 25 D02CJF.5

(a) in the region of a singularity (infinite value) of the solution, the routine will usually stop with
IFAIL ¼ 2, unless overflow occurs first. Numerical integration cannot be continued through a
singularity, and analytic treatment should be considered;

(b) for ‘stiff’ equations where the solution contains rapidly decaying components, the routine will use
very small steps in x (internally to D02CJF) to preserve stability. This will exhibit itself by making
the computing time excessively long, or occasionally by an exit with IFAIL ¼ 2. Adams’ methods
are not efficient in such cases, and you should try D02EJF.

10 Example

This example illustrates the solution of four different problems. In each case the differential system (for a
projectile) is

y0 ¼ tan�

v0 ¼ �0:032 tan�
v � 0:02v

cos�

�0 ¼ �0:032
v2

over an interval X ¼ 0:0 to XEND ¼ 10:0 starting with values y ¼ 0:5, v ¼ 0:5 and � ¼ �=5. We solve
each of the following problems with local error tolerances 1:0E�4 and 1:0E�5.

(i) To integrate to x ¼ 10:0 producing output at intervals of 2:0 until a point is encountered where
y ¼ 0:0.

(ii) As (i) but with no intermediate output.

(iii) As (i) but with no termination on a root-finding condition.

(iv) As (i) but with no intermediate output and no root-finding termination condition.

10.1 Program Text

! D02CJF Example Program Text
! Mark 25 Release. NAG Copyright 2014.

Module d02cjfe_mod

! Data for D02CJF example program

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn, g, output

! .. Parameters ..
Integer, Parameter, Public :: n = 3, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp), Public, Save :: h, xend

! n: number of differential equations
Contains

Subroutine output(xsol,y)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: xsol

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: y(*)

! .. Local Scalars ..
Integer :: j

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,99999) xsol, (y(j),j=1,n)
xsol = xsol + h

D02CJF NAG Library Manual

D02CJF.6 Mark 25

! Make sure we exactly hit xsol = xend
If (abs(xsol-xend)<h/4.0E0_nag_wp) xsol = xend
Return

99999 Format (1X,F8.2,3F13.5)
End Subroutine output
Subroutine fcn(x,y,f)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = -0.032E0_nag_wp
Real (Kind=nag_wp), Parameter :: beta = -0.02E0_nag_wp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(*)
Real (Kind=nag_wp), Intent (In) :: y(*)

! .. Intrinsic Procedures ..
Intrinsic :: cos, tan

! .. Executable Statements ..
f(1) = tan(y(3))
f(2) = alpha*tan(y(3))/y(2) + beta*y(2)/cos(y(3))
f(3) = alpha/y(2)**2
Return

End Subroutine fcn
Function g(x,y)

! .. Function Return Value ..
Real (Kind=nag_wp) :: g

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: y(*)

! .. Executable Statements ..
g = y(1)
Return

End Function g
End Module d02cjfe_mod
Program d02cjfe

! D02CJF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02cjf, d02cjw, d02cjx, nag_wp
Use d02cjfe_mod, Only: fcn, g, h, n, nin, nout, output, xend

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: tol, x, xinit
Integer :: i, icase, ifail, iw, j, kinit

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: w(:), y(:), yinit(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’D02CJF Example Program Results’
iw = 21*n + 28
Allocate (w(iw),y(n),yinit(n))

! Skip heading in data file
Read (nin,*)

! xinit: initial x value, xend: final x value.
Read (nin,*) xinit
Read (nin,*) xend
Read (nin,*) yinit(1:n)
Read (nin,*) kinit
Do icase = 1, 4

Write (nout,*)
Select Case (icase)
Case (1)

Write (nout,99995) icase, ’intermediate output, root-finding’
Case (2)

Write (nout,99995) icase, ’no intermediate output, root-finding’

D02 – Ordinary Differential D02CJF

Mark 25 D02CJF.7

Case (3)
Write (nout,99995) icase, ’intermediate output, no root-finding’

Case (4)
Write (nout,99995) icase, &

’no intermediate output, no root-finding (integrate to XEND)’
End Select
Do j = 4, 5

tol = 10.0E0_nag_wp**(-j)
Write (nout,*)
Write (nout,99999) ’ Calculation with TOL =’, tol
x = xinit
y(1:n) = yinit(1:n)
If (icase/=2) Then

Write (nout,*) ’ X Y(1) Y(2) Y(3)’
h = (xend-x)/real(kinit+1,kind=nag_wp)

End If
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Select Case (icase)
Case (1)

Call d02cjf(x,xend,n,y,fcn,tol,’Default’,output,g,w,ifail)
Write (nout,99998) ’ Root of Y(1) = 0.0 at’, x
Write (nout,99997) ’ Solution is’, (y(i),i=1,n)

Case (2)
Call d02cjf(x,xend,n,y,fcn,tol,’Default’,d02cjx,g,w,ifail)
Write (nout,99998) ’ Root of Y(1) = 0.0 at’, x
Write (nout,99997) ’ Solution is’, (y(i),i=1,n)

Case (3)
Call d02cjf(x,xend,n,y,fcn,tol,’Default’,output,d02cjw,w,ifail)

Case (4)
Write (nout,99996) x, (y(i),i=1,n)
Call d02cjf(x,xend,n,y,fcn,tol,’Default’,d02cjx,d02cjw,w,ifail)
Write (nout,99996) x, (y(i),i=1,n)

End Select
End Do
If (icase<4) Then

Write (nout,*)
End If

End Do

99999 Format (1X,A,E8.1)
99998 Format (1X,A,F7.3)
99997 Format (1X,A,3F13.5)
99996 Format (1X,F8.2,3F13.5)
99995 Format (1X,’Case ’,I1,’: ’,A)

End Program d02cjfe

10.2 Program Data

D02CJF Example Program Data
0.0 : xinit

10.0 : xend
0.5 0.5 6.28318530717958647692E-1 : yinit
4 : kinit

10.3 Program Results

D02CJF Example Program Results

Case 1: intermediate output, root-finding

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 0.50000 0.50000 0.62832
2.00 1.54931 0.40548 0.30662
4.00 1.74229 0.37433 -0.12890
6.00 1.00554 0.41731 -0.55068

Root of Y(1) = 0.0 at 7.288
Solution is -0.00000 0.47486 -0.76011

D02CJF NAG Library Manual

D02CJF.8 Mark 25

Calculation with TOL = 0.1E-04
X Y(1) Y(2) Y(3)

0.00 0.50000 0.50000 0.62832
2.00 1.54933 0.40548 0.30662
4.00 1.74232 0.37433 -0.12891
6.00 1.00552 0.41731 -0.55069

Root of Y(1) = 0.0 at 7.288
Solution is -0.00000 0.47486 -0.76010

Case 2: no intermediate output, root-finding

Calculation with TOL = 0.1E-03
Root of Y(1) = 0.0 at 7.288
Solution is -0.00000 0.47486 -0.76011

Calculation with TOL = 0.1E-04
Root of Y(1) = 0.0 at 7.288
Solution is -0.00000 0.47486 -0.76010

Case 3: intermediate output, no root-finding

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 0.50000 0.50000 0.62832
2.00 1.54931 0.40548 0.30662
4.00 1.74229 0.37433 -0.12890
6.00 1.00554 0.41731 -0.55068
8.00 -0.74589 0.51299 -0.85371

10.00 -3.62813 0.63325 -1.05152

Calculation with TOL = 0.1E-04
X Y(1) Y(2) Y(3)

0.00 0.50000 0.50000 0.62832
2.00 1.54933 0.40548 0.30662
4.00 1.74232 0.37433 -0.12891
6.00 1.00552 0.41731 -0.55069
8.00 -0.74601 0.51299 -0.85372

10.00 -3.62829 0.63326 -1.05153

Case 4: no intermediate output, no root-finding (integrate to XEND)

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 0.50000 0.50000 0.62832
10.00 -3.62813 0.63325 -1.05152

Calculation with TOL = 0.1E-04
X Y(1) Y(2) Y(3)

0.00 0.50000 0.50000 0.62832
10.00 -3.62829 0.63326 -1.05153

D02 – Ordinary Differential D02CJF

Mark 25 D02CJF.9

-4

-3

-2

-1

 0

 1

 2

 0 2 4 6 8 10

So
lu

ti
on

x

Example Program
ODE Solution using Adams Method with Root-finding

height

velocity

angle

he
ig

ht
 =

 0

D02CJF NAG Library Manual

D02CJF.10 (last) Mark 25

	D02CJF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Hall and Watt (1976)

	5 Parameters
	X
	XEND
	N
	Y
	FCN
	X
	Y
	F

	TOL
	RELABS
	OUTPUT
	XSOL
	Y

	G
	X
	Y

	W
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

