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1 Scope of the Chapter

This chapter is concerned with computing the zeros of a polynomial with real or complex coefficients.

2 Background to the Problems

Let f zð Þ be a polynomial of degree n with complex coefficients ai:

f zð Þ � a0z
n þ a1z

n�1 þ a2z
n�2 þ � � � þ an�1zþ an; a0 6¼ 0:

A complex number z1 is called a zero of f zð Þ (or equivalently a root of the equation f zð Þ ¼ 0), if

f z1ð Þ ¼ 0:

If z1 is a zero, then f zð Þ can be divided by a factor z� z1ð Þ:
f zð Þ ¼ z� z1ð Þf1 zð Þ ð1Þ

where f1 zð Þ is a polynomial of degree n� 1. By the Fundamental Theorem of Algebra, a polynomial
f zð Þ always has a zero, and so the process of dividing out factors z� zið Þ can be continued until we
have a complete factorization of f zð Þ:

f zð Þ � a0 z� z1ð Þ z� z2ð Þ . . . z� znð Þ:

Here the complex numbers z1; z2; . . . ; zn are the zeros of f zð Þ; they may not all be distinct, so it is
sometimes more convenient to write

f zð Þ � a0 z� z1ð Þm1 z� z2ð Þm2 . . . z� zkð Þmk; k � n;

with distinct zeros z1; z2; . . . ; zk and multiplicities mi � 1. If mi ¼ 1, zi is called a simple or isolated
zero; if mi > 1, zi is called a multiple or repeated zero; a multiple zero is also a zero of the derivative
of f zð Þ.
If the coefficients of f zð Þ are all real, then the zeros of f zð Þ are either real or else occur as pairs of
conjugate complex numbers xþ iy and x� iy. A pair of complex conjugate zeros are the zeros of a
quadratic factor of f zð Þ, z2 þ rzþ sð Þ, with real coefficients r and s.

Mathematicians are accustomed to thinking of polynomials as pleasantly simple functions to work with.
However, the problem of numerically computing the zeros of an arbitrary polynomial is far from simple.
A great variety of algorithms have been proposed, of which a number have been widely used in practice;
for a fairly comprehensive survey, see Householder (1970). All general algorithms are iterative. Most
converge to one zero at a time; the corresponding factor can then be divided out as in equation (1) above
– this process is called deflation or, loosely, dividing out the zero – and the algorithm can be applied
again to the polynomial f1 zð Þ. A pair of complex conjugate zeros can be divided out together – this
corresponds to dividing f zð Þ by a quadratic factor.

Whatever the theoretical basis of the algorithm, a number of practical problems arise; for a thorough
discussion of some of them see Peters and Wilkinson (1971) and Chapter 2 of Wilkinson (1963). The
most elementary point is that, even if z1 is mathematically an exact zero of f zð Þ, because of the
fundamental limitations of computer arithmetic the computed value of f z1ð Þ will not necessarily be
exactly 0:0. In practice there is usually a small region of values of z about the exact zero at which the
computed value of f zð Þ becomes swamped by rounding errors. Moreover, in many algorithms this
inaccuracy in the computed value of f zð Þ results in a similar inaccuracy in the computed step from one
iterate to the next. This limits the precision with which any zero can be computed. Deflation is another
potential cause of trouble, since, in the notation of equation (1), the computed coefficients of f1 zð Þ will
not be completely accurate, especially if z1 is not an exact zero of f zð Þ; so the zeros of the computed
f1 zð Þ will deviate from the zeros of f zð Þ.
A zero is called ill-conditioned if it is sensitive to small changes in the coefficients of the polynomial.
An ill-conditioned zero is likewise sensitive to the computational inaccuracies just mentioned.
Conversely a zero is called well-conditioned if it is comparatively insensitive to such perturbations.
Roughly speaking a zero which is well separated from other zeros is well-conditioned, while zeros which
are close together are ill-conditioned, but in talking about ‘closeness’ the decisive factor is not the
absolute distance between neighbouring zeros but their ratio: if the ratio is close to one the zeros are ill-
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conditioned. In particular, multiple zeros are ill-conditioned. A multiple zero is usually split into a cluster
of zeros by perturbations in the polynomial or computational inaccuracies.

3 Recommendations on Choice and Use of Available Routines

All zeros of cubic,
complex coefficients ........................................................................................................ C02AMF
real coefficients ............................................................................................................... C02AKF

All zeros of polynomial,
complex coefficients,

modified Laguerre’s method ....................................................................................... C02AFF
real coefficients,

modified Laguerre’s method ....................................................................................... C02AGF

All zeros of quadratic,
complex coefficients ........................................................................................................ C02AHF
real coefficients ............................................................................................................... C02AJF

All zeros of quartic,
complex coefficients ........................................................................................................ C02ANF
real coefficients ............................................................................................................... C02ALF

4 Auxiliary Routines Associated with Library Routine Parameters

None.

5 Routines Withdrawn or Scheduled for Withdrawal

None.
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