
NAG Library Routine Document

G08CCF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

G08CCF performs the one sample Kolmogorov–Smirnov distribution test, using a user-specified
distribution.

2 Specification

SUBROUTINE G08CCF (N, X, CDF, NTYPE, D, Z, P, SX, IFAIL)

INTEGER N, NTYPE, IFAIL

REAL (KIND=nag_wp) X(N), CDF, D, Z, P, SX(N)

EXTERNAL CDF

3 Description

The data consists of a single sample of n observations, denoted by x1; x2; . . . ; xn. Let Sn x ið Þ
� �

and

F0 x ið Þ
� �

represent the sample cumulative distribution function and the theoretical (null) cumulative
distribution function respectively at the point x ið Þ, where x ið Þ is the ith smallest sample observation.

The Kolmogorov–Smirnov test provides a test of the null hypothesis H0: the data are a random sample of
observations from a theoretical distribution specified by you (in CDF) against one of the following
alternative hypotheses.

(i) H1: the data cannot be considered to be a random sample from the specified null distribution.

(ii) H2: the data arise from a distribution which dominates the specified null distribution. In practical
terms, this would be demonstrated if the values of the sample cumulative distribution function Sn xð Þ
tended to exceed the corresponding values of the theoretical cumulative distribution function F0 xð Þ.

(iii) H3: the data arise from a distribution which is dominated by the specified null distribution. In
practical terms, this would be demonstrated if the values of the theoretical cumulative distribution
function F0 xð Þ tended to exceed the corresponding values of the sample cumulative distribution
function Sn xð Þ.

One of the following test statistics is computed depending on the particular alternative hypothesis specified
(see the description of the parameter NTYPE in Section 5).

For the alternative hypothesis H1:

Dn – the largest absolute deviation between the sample cumulative distribution function and the
theoretical cumulative distribution function. Formally Dn ¼ max Dþn ;D

�
n

� �
.

For the alternative hypothesis H2:

Dþn – the largest positive deviation between the sample cumulative distribution function and the
theoretical cumulative distribution function. Formally Dþn ¼ max Sn x ið Þ

� �
� F0 x ið Þ

� �
; 0

� �
.

For the alternative hypothesis H3:

D�n – the largest positive deviation between the theoretical cumulative distribution function and the
sample cumulative distribution function. Formally D�n ¼ max F0 x ið Þ

� �
� Sn x i�1ð Þ

� �
; 0

� �
. This is

only true for continuous distributions. See Section 8 for comments on discrete distributions.
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The standardized statistic, Z ¼ D� ffiffiffi
n
p

, is also computed, where D may be Dn;D
þ
n or D�n depending on

the choice of the alternative hypothesis. This is the standardized value of D with no continuity correction
applied and the distribution of Z converges asymptotically to a limiting distribution, first derived by
Kolmogorov (1933), and then tabulated by Smirnov (1948). The asymptotic distributions for the one-sided
statistics were obtained by Smirnov (1933).

The probability, under the null hypothesis, of obtaining a value of the test statistic as extreme as that
observed, is computed. If n � 100, an exact method given by Conover (1980) is used. Note that the
method used is only exact for continuous theoretical distributions and does not include Conover’s
modification for discrete distributions. This method computes the one-sided probabilities. The two-sided
probabilities are estimated by doubling the one-sided probability. This is a good estimate for small p, that
is p � 0:10, but it becomes very poor for larger p. If n > 100 then p is computed using the Kolmogorov–
Smirnov limiting distributions; see Feller (1948), Kendall and Stuart (1973), Kolmogorov (1933), Smirnov
(1933) and Smirnov (1948).
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5 Parameters

1: N – INTEGER Input

On entry: n, the number of observations in the sample.

Constraint: N � 1.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: the sample observations, x1; x2; . . . ; xn.

3: CDF – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

CDF must return the value of the theoretical (null) cumulative distribution function for a given value
of its argument.

The specification of CDF is:

FUNCTION CDF (X)

REAL (KIND=nag_wp) CDF

REAL (KIND=nag_wp) X

1: X – REAL (KIND=nag_wp) Input

On entry: the argument for which CDF must be evaluated.
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CDF must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which G08CCF is called. Parameters denoted as Input must not be changed by
this procedure.

Constraint: CDF must always return a value in the range 0:0; 1:0½ � and CDF must always satify the
condition that CDFðx1Þ � CDFðx2Þ for any x1 � x2.

4: NTYPE – INTEGER Input

On entry: the statistic to be calculated, i.e., the choice of alternative hypothesis.

NTYPE ¼ 1
Computes Dn, to test H0 against H1.

NTYPE ¼ 2
Computes Dþn , to test H0 against H2.

NTYPE ¼ 3
Computes D�n , to test H0 against H3.

Constraint: NTYPE ¼ 1, 2 or 3.

5: D – REAL (KIND=nag_wp) Output

On exit: the Kolmogorov–Smirnov test statistic (Dn, Dþn or D�n according to the value of NTYPE).

6: Z – REAL (KIND=nag_wp) Output

On exit: a standardized value, Z, of the test statistic, D, without the continuity correction applied.

7: P – REAL (KIND=nag_wp) Output

On exit: the probability, p, associated with the observed value of D, where D may Dn, D
þ
n or D�n

depending on the value of NTYPE (see Section 3).

8: SXðNÞ – REAL (KIND=nag_wp) array Output

On exit: the sample observations, x1; x2; . . . ; xn, sorted in ascending order.

9: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1.
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IFAIL ¼ 2

On entry, NTYPE 6¼ 1, 2 or 3.

IFAIL ¼ 3

The supplied theoretical cumulative distribution function returns a value less than 0:0 or greater than
1:0, thereby violating the definition of the cumulative distribution function.

IFAIL ¼ 4

The supplied theoretical cumulative distribution function is not a nondecreasing function thereby
violating the definition of a cumulative distribution function, that is F0 xð Þ > F0 yð Þ for some x < y.

7 Accuracy

For most cases the approximation for p given when n > 100 has a relative error of less than 0:01. The
two-sided probability is approximated by doubling the one-sided probability. This is only good for small
p, that is p < 0:10, but very poor for large p. The error is always on the conservative side.

8 Further Comments

The time taken by G08CCF increases with n until n > 100 at which point it drops and then increases
slowly.

For a discrete theoretical cumulative distribution function F0 xð Þ, D�n ¼ max F0 x ið Þ
� �

� Sn x ið Þ
� �

; 0
� �

.
Thus if you wish to provide a discrete distribution function the following adjustment needs to be made,

for Dþn , return F xð Þ as x as usual;

for D�n , return F x� dð Þ at x where d is the discrete jump in the distribution. For example d ¼ 1
for the Poisson or binomial distributions.

9 Example

The following example performs the one sample Kolmogorov–Smirnov test to test whether a sample of 30
observations arise firstly from a uniform distribution U 0; 1ð Þ or secondly from a Normal distribution with
mean 0:75 and standard deviation 0:5. The two-sided test statistic, Dn, the standardized test statistic, Z,
and the upper tail probability, p, are computed and then printed for each test.

9.1 Program Text

! G08CCF Example Program Text
! Mark 24 Release. NAG Copyright 2012.

Module g08ccfe_mod

! G08CCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: std = 0.5_nag_wp
Real (Kind=nag_wp), Parameter :: xmean = 0.75_nag_wp
Integer, Parameter :: nin = 5, nout = 6

Contains
Function user_cdf(x)

! Cumulative distribution function for the user supplied distribution.
! In this example, the distribution is the normal distribution, with
! mean = 0.75 and standard deviation = 0.5

! .. Use Statements ..
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Use nag_library, Only: s15abf
! .. Function Return Value ..

Real (Kind=nag_wp) :: user_cdf
! .. Scalar Arguments ..

Real (Kind=nag_wp), Intent (In) :: x
! .. Local Scalars ..

Real (Kind=nag_wp) :: z
Integer :: ifail

! .. Executable Statements ..
z = (x-xmean)/std
ifail = -1
user_cdf = s15abf(z,ifail)
Return

End Function user_cdf
End Module g08ccfe_mod
Program g08ccfe

! G08CCF Example Main Program

! .. Use Statements ..
Use nag_library, Only: g08ccf, nag_wp
Use g08ccfe_mod, Only: nin, nout, user_cdf

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: d, p, z
Integer :: ifail, n, ntype

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: sx(:), x(:)

! .. Executable Statements ..
Write (nout,*) ’G08CCF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

! Read in problem type and required statistic
Read (nin,*) n, ntype

Allocate (x(n),sx(n))

! Read in data
Read (nin,*) x(1:n)

! Perform K-S test for user specified distribution
ifail = 0
Call g08ccf(n,x,user_cdf,ntype,d,z,p,sx,ifail)

! Display results
Write (nout,*) ’Test against normal distribution with mean = 0.75’
Write (nout,*) ’and standard deviation = 0.5.’
Write (nout,*)
Write (nout,99999) ’Test statistic D = ’, d
Write (nout,99999) ’Z statistic = ’, z
Write (nout,99999) ’Tail probability = ’, p

99999 Format (1X,A,F8.4)
End Program g08ccfe

9.2 Program Data

G08CCF Example Program Data
30 1 :: N,NTYPE
0.01 0.30 0.20 0.90 1.20 0.09 1.30 0.18 0.90 0.48
1.98 0.03 0.50 0.07 0.70 0.60 0.95 1.00 0.31 1.45
1.04 1.25 0.15 0.75 0.85 0.22 1.56 0.81 0.57 0.55 :: End of X
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9.3 Program Results

G08CCF Example Program Results

Test against normal distribution with mean = 0.75
and standard deviation = 0.5.

Test statistic D = 0.1439
Z statistic = 0.7882
Tail probability = 0.5262

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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