NAG Library Routine Document
 F04CDF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F04CDF computes the solution to a complex system of linear equations $A X=B$, where A is an n by n Hermitian positive definite matrix and X and B are n by r matrices. An estimate of the condition number of A and an error bound for the computed solution are also returned.

2 Specification

```
SUBROUTINE F04CDF (UPLO, N, NRHS, A, LDA, B, LDB, RCOND, ERRBND, IFAIL)
INTEGER N, NRHS, LDA, LDB, IFAIL
REAL (KIND=nag_wp) RCOND, ERRBND
COMPLEX (KIND=nag_wp) A(LDA,*), B(LDB,*)
CHARACTER(1) UPLO
```


3 Description

The Cholesky factorization is used to factor A as $A=U^{\mathrm{H}} U$, if UPLO $=$ ' U ', or $A=L L^{\mathrm{H}}$, if UPLO $=$ ' L ', where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of A is then used to solve the system of equations $A X=B$.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Parameters

1: UPLO - CHARACTER(1)
Input
On entry: if UPLO $=$ ' U ', the upper triangle of the matrix A is stored.
If UPLO $=$ 'L', the lower triangle of the matrix A is stored.
Constraint: UPLO = 'U' or 'L'.
2: N - INTEGER Input
On entry: the number of linear equations n, i.e., the order of the matrix A.
Constraint: $\mathrm{N} \geq 0$.
3: NRHS - INTEGER Input
On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.
Constraint: NRHS ≥ 0.

4: $\mathrm{A}(\mathrm{LDA}, *)$ - COMPLEX (KIND=nag_wp) array
Input/Output
Note: the second dimension of the array A must be at least $\max (1, \mathrm{~N})$.
On entry: the n by n Hermitian matrix A.
If UPLO $=$ ' U ', the leading N by N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced.

If UPLO $=$ ' L ', the leading N by N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.

On exit: if IFAIL $=0$ or $\mathrm{N}+1$, the factor U or L from the Cholesky factorization $A=U^{\mathrm{H}} U$ or $A=L L^{\mathrm{H}}$.

5: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F04CDF is called.

Constraint: $\operatorname{LDA} \geq \max (1, \mathrm{~N})$.
6: $\quad \mathrm{B}(\mathrm{LDB}, *)-\mathrm{COMPLEX}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
Note: the second dimension of the array B must be at least max(1, NRHS).
On entry: the n by r matrix of right-hand sides B.
On exit: if IFAIL $=0$ or $\mathrm{N}+1$, the n by r solution matrix X.

7: LDB - INTEGER
Input
On entry: the first dimension of the array B as declared in the (sub)program from which F04CDF is called.

Constraint: $\mathrm{LDB} \geq \max (1, \mathrm{~N})$.
8: \quad RCOND - REAL (KIND=nag_wp)
Output
On exit: if IFAIL $=0$ or $\mathrm{N}+1$, an estimate of the reciprocal of the condition number of the matrix A, computed as RCOND $=1 /\left(\|A\|_{1}\left\|A^{-1}\right\|_{1}\right)$.

9: \quad ERRBND - REAL (KIND=nag_wp)
Output
On exit: if IFAIL $=0$ or $\mathrm{N}+1$, an estimate of the forward error bound for a computed solution \hat{x}, such that $\|\hat{x}-x\|_{1} /\|x\|_{1} \leq$ ERRBND, where \hat{x} is a column of the computed solution returned in the array B and x is the corresponding column of the exact solution X. If RCOND is less than machine precision, then ERRBND is returned as unity.

10: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL <0 and IFAIL $\neq-999$
If IFAIL $=-i$, the i th argument had an illegal value.
IFAIL $=-999$
Allocation of memory failed. The real allocatable memory required is N , and the complex allocatable memory required is $2 \times \mathrm{N}$. Allocation failed before the solution could be computed.

IFAIL >0 and IFAIL $\leq \mathrm{N}$
If IFAIL $=i$, the leading minor of order i of A is not positive definite. The factorization could not be completed, and the solution has not been computed.

IFAIL $=\mathrm{N}+1$
RCOND is less than machine precision, so that the matrix A is numerically singular. A solution to the equations $A X=B$ has nevertheless been computed.

7 Accuracy

The computed solution for a single right-hand side, \hat{x}, satisfies an equation of the form

$$
(A+E) \hat{x}=b
$$

where

$$
\|E\|_{1}=O(\epsilon)\|A\|_{1}
$$

and ϵ is the machine precision. An approximate error bound for the computed solution is given by

$$
\frac{\|\hat{x}-x\|_{1}}{\|x\|_{1}} \leq \kappa(A) \frac{\|E\|_{1}}{\|A\|_{1}}
$$

where $\kappa(A)=\left\|A^{-1}\right\|_{1}\|A\|_{1}$, the condition number of A with respect to the solution of the linear equations. F04CDF uses the approximation $\|E\|_{1}=\epsilon\|A\|_{1}$ to estimate ERRBND. See Section 4.4 of Anderson et al. (1999) for further details.

8 Further Comments

The total number of floating point operations required to solve the equations $A X=B$ is proportional to $\left(\frac{1}{3} n^{3}+n^{2} r\right)$. The condition number estimation typically requires between four and five solves and never more than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition number; see Section 15.3 of Higham (2002) for further details.
The real analogue of F 04 CDF is F 04 BDF .

9 Example

This example solves the equations

$$
A X=B
$$

where A is the Hermitian positive definite matrix

$$
A=\left(\begin{array}{lcrc}
3.23 & 1.51-1.92 i & 1.90+0.84 i & 0.42+2.50 i \\
1.51+1.92 i & 3.58 & -0.23+1.11 i & -1.18+1.37 i \\
1.90-0.84 i & -0.23-1.11 i & 4.09 & 2.33-0.14 i \\
0.42-2.50 i & -1.18-1.37 i & 2.33+0.14 i & 4.29
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{rr}
3.93-6.14 i & 1.48+6.58 i \\
6.17+9.42 i & 4.65-4.75 i \\
-7.17-21.83 i & -4.91+2.29 i \\
1.99-14.38 i & 7.64-10.79 i
\end{array}\right)
$$

An estimate of the condition number of A and an approximate error bound for the computed solutions are also printed.

9.1 Program Text

Program f04cdfe
! FO4CDF Example Program Text
! Mark 24 Release. NAG Copyright 2012.
! .. Use Statements ..
Use nag_library, Only: f04cdf, nag_wp, x04dbf
! . . Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter : \quad nin $=5$, nout $=6$
! .. Local Scalars .
Real (Kind=nag_wp) :: errbnd, rcond
Integer : : i, ierr, ifail, lda, ldb, n, nrhs
! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable : : a(:,:), b(:,:)
Character (1) : clabs(1), rlabs(1)
.. Executable Statements ..
Write (nout,*) 'FO4CDF Example Program Results'
Write (nout,*)
Flush (nout)
! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
lda $=\mathrm{n}$
ldb = n
Allocate (a(lda,n),b(ldb, nrhs))
! Read the upper triangular part of A from data file Read (nin,*) (a(i,i:n), i=1,n)

Read B from data file
Read (nin,*) (b(i, 1:nrhs), i=1,n)
Solve the equations $A X=B$ for X
ifail: behaviour on error exit
$=0$ for hard exit, $=1$ for quiet-soft, =-1 for noisy-soft
ifail = 1
Call f04cdf('Upper',n,nrhs, a,lda,b,ldb,rcond,errbnd,ifail)
If (ifail==0) Then
Print solution, estimate of condition number and approximate error bound
ierr $=0$
Call x04dbf('General',' ', n, nrhs,b,ldb,'Bracketed',' ','Solution', \&
'Integer', rlabs,'Integer', clabs, 80,0 ,ierr)
Write (nout,*)

```
        Write (nout,*) 'Estimate of condition number'
        Write (nout,99999) 1.0EO_nag_wp/rcond
        Write (nout,*)
        Write (nout,*) 'Estimate of error bound for computed solutions'
        Write (nout,99999) errbnd
    Else If (ifail==n+1) Then
        Matrix A is numerically singular. Print estimate of
        reciprocal of condition number and solution
        Write (nout,*)
        Write (nout,*) 'Estimate of reciprocal of condition number'
        Write (nout,99999) rcond
        Write (nout,*)
        Flush (nout)
        ierr = 0
        Call x04dbf('General',' ',n,nrhs,b,ldb,'Bracketed',' ','Solution', &
            'Integer',rlabs,'Integer',clabs,80,0,ierr)
    Else If (ifail>0.And. ifail<=n) Then
    The matrix A is not positive definite to working precision
    Write (nout,99998) 'The leading minor of order ', ifail, &
        ' is not positive definite'
    Else
    Write (nout,99997) ifail
    End If
99999 Format (8X,1P,E9.1)
9 9 9 9 8 ~ F o r m a t ~ ( 1 X , A , I 3 , A ) ~
99997 Format (1X,' ** FO4CDF returned with IFAIL = ',I5)
End Program f04cdfe
```


9.2 Program Data

```
F04CDF Example Program Data
```


9.3 Program Results

FO4CDF Example Program Results

```
Solution
```


