
NAG Library Chapter Introduction

E04 – Minimizing or Maximizing a Function

Contents

1 Scope of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background to the Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Types of Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Unconstrained minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Nonlinear least squares problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 Minimization subject to bounds on the variables . . . . . . . . . . . . . . . . . . . 4
2.1.4 Minimization subject to linear constraints . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.5 Minimization subject to nonlinear constraints . . . . . . . . . . . . . . . . . . . . . 4
2.1.6 Minimization subject to bounds on the objective function . . . . . . . . . . . . . . 5
2.1.7 Multi-objective optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Geometric Representation and Terminology . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Gradient vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Hessian matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Jacobian matrix; matrix of constraint normals . . . . . . . . . . . . . . . . . . . . . 6

2.3 Sufficient Conditions for a Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Unconstrained minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Minimization subject to bounds on the variables . . . . . . . . . . . . . . . . . . . 7
2.3.3 Linearly-constrained minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.4 Nonlinearly-constrained minimization . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Background to Optimization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 One-dimensional optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Methods for unconstrained optimization . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.3 Methods for nonlinear least squares problems . . . . . . . . . . . . . . . . . . . . . 9
2.4.4 Methods for handling constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.5 Methods for handling multi-objective optimization . . . . . . . . . . . . . . . . . . 10

2.5 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Transformation of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Scaling the objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.3 Scaling the constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Analysis of Computed Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6.1 Convergence criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6.2 Checking results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6.3 Monitoring progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6.4 Confidence intervals for least squares solutions . . . . . . . . . . . . . . . . . . . . 13

3 Recommendations on Choice and Use of Available Routines . . . . . . . . . 13

3.1 Easy-to-use and Comprehensive Routines . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Thread Safe Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Reverse Communication Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Service Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Function Evaluations at Infeasible Points . . . . . . . . . . . . . . . . . . . . . . . . . 15

E04 – Minimizing or Maximizing a Function Introduction – E04

Mark 24 E04.1



3.6 Related Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.7 Choosing Between Variant Routines for Some Problems . . . . . . . . . . . . . . . 16

4 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Functionality Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Auxiliary Routines Associated with Library Routine Parameters . . . . . 21

7 Routines Withdrawn or Scheduled for Withdrawal . . . . . . . . . . . . . . . . 22

8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Introduction – E04 NAG Library Manual

E04.2 Mark 24



1 Scope of the Chapter

An optimization problem involves minimizing a function (called the objective function) of several
variables, possibly subject to restrictions on the values of the variables defined by a set of constraint
functions. Most routines in the Library are concerned with function minimization only, since the problem
of maximizing a given objective function F(x) is equivalent to minimizing �F xð Þ. Some routines allow
you to specify whether you are solving a minimization or maximization problem, carrying out the required
transformation of the objective function in the latter case.

In general routines in this chapter find a local minimum of a function f , that is a point x� s.t. for all x
near x� f xð Þ � f x�ð Þ.
The Chapter E05 contains routines to find the global minimum of a function f . At a global minimum
x� f xð Þ � f x�ð Þ for all x.

The Chapter H contains routines typically regarded as belonging to the field of operations research.

This introduction is only a brief guide to the subject of optimization designed for the casual user. Anyone
with a difficult or protracted problem to solve will find it beneficial to consult a more detailed text, such as
Gill et al. (1981) or Fletcher (1987).

If you are unfamiliar with the mathematics of the subject you may find some sections difficult at first
reading; if so, you should concentrate on Sections 2.1, 2.2, 2.5, 2.6 and 3.

2 Background to the Problems

2.1 Types of Optimization Problems

The solution of optimization problems by a single, all-purpose, method is cumbersome and inefficient.
Optimization problems are therefore classified into particular categories, where each category is defined by
the properties of the objective and constraint functions, as illustrated by some examples below.

Properties of Objective Function Properties of Constraints
Nonlinear Nonlinear
Sums of squares of nonlinear functions Sparse linear
Quadratic Linear
Sums of squares of linear functions Bounds
Linear None

For instance, a specific problem category involves the minimization of a nonlinear objective function
subject to bounds on the variables. In the following sections we define the particular categories of
problems that can be solved by routines contained in this chapter. Not every category is given special
treatment in the current version of the Library; however, the long-term objective is to provide a
comprehensive set of routines to solve problems in all such categories.

2.1.1 Unconstrained minimization

In unconstrained minimization problems there are no constraints on the variables. The problem can be
stated mathematically as follows:

minimize
x

F xð Þ

where x 2 Rn, that is, x ¼ x1; x2; . . . ; xnð ÞT.

2.1.2 Nonlinear least squares problems

Special consideration is given to the problem for which the function to be minimized can be expressed as a
sum of squared functions. The least squares problem can be stated mathematically as follows:

minimize
x

fTf ¼
Xm
i¼1

f2
i xð Þ

( )
, x 2 Rn

where the ith element of the m-vector f is the function fi xð Þ.

E04 – Minimizing or Maximizing a Function Introduction – E04

Mark 24 E04.3



2.1.3 Minimization subject to bounds on the variables

These problems differ from the unconstrained problem in that at least one of the variables is subject to a
simple bound (or restriction) on its value, e.g., x5 � 10, but no constraints of a more general form are
present.

The problem can be stated mathematically as follows:

minimize
x

F xð Þ, x 2 Rn

subject to li � xi � ui, for i ¼ 1; 2; . . . ; n.

This format assumes that upper and lower bounds exist on all the variables. By conceptually allowing
ui ¼ þ1 and li ¼ �1 all the variables need not be restricted.

2.1.4 Minimization subject to linear constraints

A general linear constraint is defined as a constraint function that is linear in more than one of the
variables, e.g., 3x1 þ 2x2 � 4. The various types of linear constraint are reflected in the following
mathematical statement of the problem:

minimize
x

F xð Þ, x 2 Rn

subject to the

equality constraints: aT
i x ¼ bi i ¼ 1; 2; . . . ;m1;

inequality constraints: aT
i x � bi i ¼ m1 þ 1;m1 þ 2; . . . ;m2;

aT
i x � bi i ¼ m2 þ 1;m2 þ 2; . . . ;m3;

range constraints: sj � aT
i x � tj i ¼ m3 þ 1;m3 þ 2; . . . ;m4;

j ¼ 1; 2; . . . ;m4 �m3;
bounds constraints: li � xi � ui i ¼ 1; 2; . . . ; n

where each ai is a vector of length n; bi, sj and tj are constant scalars; and any of the categories may be
empty.

Although the bounds on xi could be included in the definition of general linear constraints, we prefer to
distinguish between them for reasons of computational efficiency.

If F xð Þ is a linear function, the linearly-constrained problem is termed a linear programming problem (LP);
if F xð Þ is a quadratic function, the problem is termed a quadratic programming problem (QP). For further
discussion of LP and QP problems, including the dual formulation of such problems, see Dantzig (1963).

2.1.5 Minimization subject to nonlinear constraints

A problem is included in this category if at least one constraint function is nonlinear, e.g.,

x2
1 þ x3 þ x4 � 2 � 0. The mathematical statement of the problem is identical to that for the linearly-

constrained case, except for the addition of the following constraints:

equality constraints: ci xð Þ ¼ 0 i ¼ 1; 2; . . . ;m5;
inequality constraints: ci xð Þ � 0 i ¼ m5 þ 1;m5 þ 2; . . . ;m6;
range constraints: vj � ci xð Þ � wj i ¼ m6 þ 1;m6 þ 2; . . . ;m7,

j ¼ 1; 2; . . . ;m7 �m6

where each ci is a nonlinear function; vj and wj are constant scalars; and any category may be empty.
Note that we do not include a separate category for constraints of the form ci xð Þ � 0, since this is
equivalent to � ci xð Þ � 0.

Although the general linear constraints could be included in the definition of nonlinear constraints, again
we prefer to distinguish between them for reasons of computational efficiency.

If F xð Þ is a nonlinear function, the nonlinearly-constrained problem is termed a nonlinear programming
problem (NLP). For further discussion of NLP problems, see Gill et al. (1981) or Fletcher (1987).

Introduction – E04 NAG Library Manual

E04.4 Mark 24



2.1.6 Minimization subject to bounds on the objective function

In all of the above problem categories it is assumed that

a � F xð Þ � b
where a ¼ �1 and b ¼ þ1. Problems in which a and/or b are finite can be solved by adding an extra
constraint of the appropriate type (i.e., linear or nonlinear) depending on the form of F xð Þ. Further advice
is given in Section 3.5.

2.1.7 Multi-objective optimization

Sometimes a problem may have two or more objective functions which are to be optimized at the same
time. Such problems are called multi-object, multi-criteria or multi-attribute optimization. If the
constraints are linear and the objectives are all linear then the terminology ‘goal programming’ is also
used.

Techniques used in this chapter and in Chapter E05 may be employed to address such problems.

2.2 Geometric Representation and Terminology

To illustrate the nature of optimization problems it is useful to consider the following example in two
dimensions:

F xð Þ ¼ ex1 4x2
1 þ 2x2

2 þ 4x1x2 þ 2x2 þ 1
� �

.

(This function is used as the example function in the documentation for the unconstrained routines.)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

x 2

x1

F0
F1

F2

F3

F4

c1

c1

x*

xb

xs

A

B
C

D

Figure 1

Figure 1 is a contour diagram of F xð Þ. The contours labelled F0; F1; . . . ; F4 are isovalue contours, or lines

along which the function F xð Þ takes specific constant values. The point x� ¼ 1

2
;�1

� �T
is a local

unconstrained minimum, that is, the value of F x�ð Þ ( ¼ 0) is less than at all the neighbouring points. A
function may have several such minima. The lowest of the local minima is termed a global minimum. In
the problem illustrated in Figure 1, x� is the only local minimum. The point xs is said to be a saddle
point because it is a minimum along the line AB, but a maximum along CD.

If we add the constraint x1 � 0 (a simple bound) to the problem of minimizing F xð Þ, the solution remains
unaltered. In Figure 1 this constraint is represented by the straight line passing through x1 ¼ 0, and the
shading on the line indicates the unacceptable region (i.e., x1 < 0). The region in Rn satisfying the
constraints of an optimization problem is termed the feasible region. A point satisfying the constraints is
defined as a feasible point.

If we add the nonlinear constraint c1 xð Þ : x1 þ x2 � x1x2 �
3

2
� 0 , represented by the curved shaded line

in Figure 1, then x� is not a feasible point because c1 x
�ð Þ < 0. The solution of the new constrained

E04 – Minimizing or Maximizing a Function Introduction – E04

Mark 24 E04.5



problem is xb ’ 1:1825;�1:7397ð ÞT, the feasible point with the smallest function value (where
F xbð Þ ’ 3:0607).

2.2.1 Gradient vector

The vector of first partial derivatives of F xð Þ is called the gradient vector, and is denoted by g xð Þ, i.e.,

g xð Þ ¼ @F xð Þ
@x1

;
@F xð Þ
@x2

; . . . ;
@F xð Þ
@xn

� �T

.

For the function illustrated in Figure 1,

g xð Þ ¼ F xð Þ þ ex1 8x1 þ 4x2ð Þ
ex1 4x2 þ 4x1 þ 2ð Þ

� �
.

The gradient vector is of importance in optimization because it must be zero at an unconstrained minimum
of any function with continuous first derivatives.

2.2.2 Hessian matrix

The matrix of second partial derivatives of a function is termed its Hessian matrix. The Hessian matrix of

F xð Þ is denoted by G xð Þ, and its i; jð Þth element is given by @2F xð Þ=@xi@xj. If F xð Þ has continuous
second derivatives, then G xð Þ must be positive definite at any unconstrained minimum of F .

2.2.3 Jacobian matrix; matrix of constraint normals

In nonlinear least squares problems, the matrix of first partial derivatives of the vector-valued function f xð Þ
is termed the Jacobian matrix of f xð Þ and its i; jð Þth component is @fi=@xj.

The vector of first partial derivatives of the constraint ci xð Þ is denoted by

ai xð Þ ¼
@ci xð Þ
@x1

;
@ci xð Þ
@x2

; . . . ;
@ci xð Þ
@xn

� �T

.

The matrix whose columns are the vectors aif g is termed the matrix of constraint normals. At a point x̂,
the vector ai x̂ð Þ is orthogonal (normal) to the isovalue contour of ci xð Þ passing through x̂; this relationship
is illustrated for a two-dimensional function in Figure 2.

Figure 2

Note that if ci xð Þ is a linear constraint involving aT
i x, then its vector of first partial derivatives is simply

the vector ai.

2.3 Sufficient Conditions for a Solution

All nonlinear functions will be assumed to have continuous second derivatives in the neighbourhood of the
solution.

2.3.1 Unconstrained minimization

The following conditions are sufficient for the point x� to be an unconstrained local minimum of F xð Þ:

Introduction – E04 NAG Library Manual

E04.6 Mark 24



(i) g x�ð Þk k ¼ 0; and

(ii) G x�ð Þ is positive definite,

where gk k denotes the Euclidean length of g.

2.3.2 Minimization subject to bounds on the variables

At the solution of a bounds-constrained problem, variables which are not on their bounds are termed free
variables. If it is known in advance which variables are on their bounds at the solution, the problem can
be solved as an unconstrained problem in just the free variables; thus, the sufficient conditions for a
solution are similar to those for the unconstrained case, applied only to the free variables.

Sufficient conditions for a feasible point x� to be the solution of a bounds-constrained problem are as
follows:

(i) �g x�ð Þk k ¼ 0; and

(ii) �G x�ð Þ is positive definite; and

(iii) gj x
�ð Þ < 0; xj ¼ uj; gj x�ð Þ > 0; xj ¼ lj,

where �g xð Þ is the gradient of F xð Þ with respect to the free variables, and �G xð Þ is the Hessian matrix of
F xð Þ with respect to the free variables. The extra condition (iii) ensures that F xð Þ cannot be reduced by
moving off one or more of the bounds.

2.3.3 Linearly-constrained minimization

For the sake of simplicity, the following description does not include a specific treatment of bounds or
range constraints, since the results for general linear inequality constraints can be applied directly to these
cases.

At a solution x�, of a linearly-constrained problem, the constraints which hold as equalities are called the

active or binding constraints. Assume that there are t active constraints at the solution x�, and let Â

denote the matrix whose columns are the columns of A corresponding to the active constraints, with b̂ the
vector similarly obtained from b; then

ÂTx� ¼ b̂.
The matrix Z is defined as an n� n� tð Þ matrix satisfying:

ÂTZ ¼ 0;

ZTZ ¼ I.

The columns of Z form an orthogonal basis for the set of vectors orthogonal to the columns of Â.

Define

gZ xð Þ ¼ ZTg xð Þ, the projected gradient vector of F xð Þ;

GZ xð Þ ¼ ZTG xð ÞZ, the projected Hessian matrix of F xð Þ.
At the solution of a linearly-constrained problem, the projected gradient vector must be zero, which implies

that the gradient vector g x�ð Þ can be written as a linear combination of the columns of Â, i.e.,

g x�ð Þ ¼
Xt
i¼1

��i âi ¼ Â��. The scalar ��i is defined as the Lagrange multiplier corresponding to the ith

active constraint. A simple interpretation of the ith Lagrange multiplier is that it gives the gradient of
F xð Þ along the ith active constraint normal; a convenient definition of the Lagrange multiplier vector
(although not a recommended method for computation) is:

�� ¼ ÂTÂ
� ��1

ÂTg x�ð Þ.

Sufficient conditions for x� to be the solution of a linearly-constrained problem are:

E04 – Minimizing or Maximizing a Function Introduction – E04

Mark 24 E04.7



(i) x� is feasible, and ÂTx� ¼ b̂; and

(ii) gZ x�ð Þk k ¼ 0, or equivalently, g x�ð Þ ¼ Â��; and

(iii) GZ x�ð Þ is positive definite; and

(iv) ��i > 0 if ��i corresponds to a constraint âT
i x
� � b̂i;

��i < 0 if ��i corresponds to a constraint âT
i x
� � b̂i.

The sign of ��i is immaterial for equality constraints, which by definition are always active.

2.3.4 Nonlinearly-constrained minimization

For nonlinearly-constrained problems, much of the terminology is defined exactly as in the linearly-
constrained case. The set of active constraints at x again means the set of constraints that hold as

equalities at x, with corresponding definitions of ĉ and Â: the vector ĉ xð Þ contains the active constraint

functions, and the columns of Â xð Þ are the gradient vectors of the active constraints. As before, Z is

defined in terms of Â xð Þ as a matrix such that:

ÂTZ ¼ 0;

ZTZ ¼ I

where the dependence on x has been suppressed for compactness.

The projected gradient vector gZ xð Þ is the vector ZTg xð Þ. At the solution x� of a nonlinearly-constrained
problem, the projected gradient must be zero, which implies the existence of Lagrange multipliers

corresponding to the active constraints, i.e., g x�ð Þ ¼ Â x�ð Þ��.
The Lagrangian function is given by:

L x; �ð Þ ¼ F xð Þ � �Tĉ xð Þ.

We define gL xð Þ as the gradient of the Lagrangian function; GL xð Þ as its Hessian matrix, and ĜL xð Þ as its

projected Hessian matrix, i.e., ĜL ¼ ZTGLZ.

Sufficient conditions for x� to be the solution of a nonlinearly-constrained problem are:

(i) x� is feasible, and ĉ x�ð Þ ¼ 0; and

(ii) gZ x�ð Þk k ¼ 0, or, equivalently, g x�ð Þ ¼ Â x�ð Þ��; and

(iii) ĜL x
�ð Þ is positive definite; and

(iv) ��i > 0 if ��i corresponds to a constraint of the form ĉi � 0.

The sign of ��i is immaterial for equality constraints, which by definition are always active.

Note that condition (ii) implies that the projected gradient of the Lagrangian function must also be zero at

x�, since the application of ZT annihilates the matrix Â x�ð Þ.

2.4 Background to Optimization Methods

All the algorithms contained in this chapter generate an iterative sequence x kð Þ
n o

that converges to the

solution x� in the limit, except for some special problem categories (i.e., linear and quadratic
programming). To terminate computation of the sequence, a convergence test is performed to determine
whether the current estimate of the solution is an adequate approximation. The convergence tests are
discussed in Section 2.6.

Most of the methods construct a sequence x kð Þ
n o

satisfying:

x kþ1ð Þ ¼ x kð Þ þ � kð Þp kð Þ,

where the vector p kð Þ is termed the direction of search, and � kð Þ is the steplength. The steplength � kð Þ is

Introduction – E04 NAG Library Manual

E04.8 Mark 24



chosen so that F x kþ1ð Þ
� �

< F x kð Þ
� �

and is computed using one of the techniques for one-dimensional

optimization referred to in Section 2.4.1.

2.4.1 One-dimensional optimization

The Library contains two special routines for minimizing a function of a single variable. Both routines are
based on safeguarded polynomial approximation. One routine requires function evaluations only and fits a
quadratic polynomial whilst the other requires function and gradient evaluations and fits a cubic
polynomial. See Section 4.1 of Gill et al. (1981).

2.4.2 Methods for unconstrained optimization

The distinctions among methods arise primarily from the need to use varying levels of information about
derivatives of F xð Þ in defining the search direction. We describe three basic approaches to unconstrained
problems, which may be extended to other problem categories. Since a full description of the methods
would fill several volumes, the discussion here can do little more than allude to the processes involved, and
direct you to other sources for a full explanation.

(a) Newton-type Methods (Modified Newton Methods)

Newton-type methods use the Hessian matrix G x kð Þ
� �

, or a finite difference approximation to

G x kð Þ
� �

, to define the search direction. The routines in the Library either require a subroutine that

computes the elements of G x kð Þ
� �

directly, or they approximate G x kð Þ
� �

by finite differences.

Newton-type methods are the most powerful methods available for general problems and will find the
minimum of a quadratic function in one iteration. See Sections 4.4 and 4.5.1 of Gill et al. (1981).

(b) Quasi-Newton Methods

Quasi-Newton methods approximate the Hessian G x kð Þ
� �

by a matrix B kð Þ which is modified at each

iteration to include information obtained about the curvature of F along the current search direction

p kð Þ. Although not as robust as Newton-type methods, quasi-Newton methods can be more efficient

because G x kð Þ
� �

is not computed directly, or approximated by finite differences. Quasi-Newton

methods minimize a quadratic function in n iterations, where n is the number of variables. See
Section 4.5.2 of Gill et al. (1981).

(c) Conjugate-gradient Methods

Unlike Newton-type and quasi-Newton methods, conjugate-gradient methods do not require the
storage of an n by n matrix and so are ideally suited to solve large problems. Conjugate-gradient type
methods are not usually as reliable or efficient as Newton-type, or quasi-Newton methods. See
Section 4.8.3 of Gill et al. (1981).

2.4.3 Methods for nonlinear least squares problems

These methods are similar to those for unconstrained optimization, but exploit the special structure of the
Hessian matrix to give improved computational efficiency.

Since

F xð Þ ¼
Xm
i¼1

f2
i xð Þ

the Hessian matrix G xð Þ is of the form

G xð Þ ¼ 2 J xð ÞTJ xð Þ þ
Xm
i¼1

fi xð ÞGi xð Þ
 !

,

where J xð Þ is the Jacobian matrix of f xð Þ, and Gi xð Þ is the Hessian matrix of fi xð Þ.

E04 – Minimizing or Maximizing a Function Introduction – E04

Mark 24 E04.9



In the neighbourhood of the solution, f xð Þk k is often small compared to J xð ÞTJ xð Þ
�� �� (for example, when

f xð Þ represents the goodness-of-fit of a nonlinear model to observed data). In such cases, 2J xð ÞTJ xð Þ
may be an adequate approximation to G xð Þ, thereby avoiding the need to compute or approximate second
derivatives of fi xð Þf g. See Section 4.7 of Gill et al. (1981).

2.4.4 Methods for handling constraints

Bounds on the variables are dealt with by fixing some of the variables on their bounds and adjusting the
remaining free variables to minimize the function. By examining estimates of the Lagrange multipliers it
is possible to adjust the set of variables fixed on their bounds so that eventually the bounds active at the
solution should be correctly identified. This type of method is called an active set method. One feature

of such methods is that, given an initial feasible point, all approximations x kð Þ are feasible. This approach
can be extended to general linear constraints. At a point, x, the set of constraints which hold as equalities
being used to predict, or approximate, the set of active constraints is called the working set.

Nonlinear constraints are more difficult to handle. If at all possible, it is usually beneficial to avoid
including nonlinear constraints during the formulation of the problem. The methods currently implemented
in the Library handle nonlinearly constrained problems by transforming them into a sequence of quadratic

programming problems. A feature of such methods is that x kð Þ is not guaranteed to be feasible except in
the limit, and this is certainly true of the routines currently in the Library. See Chapter 6, particularly
Sections 6.4 and 6.5, of Gill et al. (1981).

Anyone interested in a detailed description of methods for optimization should consult the references.

2.4.5 Methods for handling multi-objective optimization

Suppose we have objective functions fi xð Þ, i > 1, all of which we need to minimize at the same time.
There are two main approaches to this problem:

(a) Combine the individual objectives into one composite objective. Typically this might be a weighted
sum of the objectives, e.g.,

w1f1 xð Þ þ w2f2 xð Þ þ � � � þ wnfn xð Þ
Here you choose the weights to express the relative importance of the corresponding objective.
Ideally each of the fi xð Þ should be of comparable size at a solution.

(b) Order the objectives in order of importance. Suppose fi are ordered such that fi xð Þ is more important
than fiþ1 xð Þ, for i ¼ 1; 2; . . . ; n� 1. Then in the lexicographical approach to multi-objective
optimization a sequence of subproblems are solved. Firstly solve the problem for objective function
f1 xð Þ and denote by r1 the value of this minimum. If i� 1ð Þ subproblems have been solved with
results ri�1 then subproblem i becomes min fi xð Þð Þ subject to rk � fk xð Þ � rk, for k ¼ 1; 2; . . . ; i� 1
plus the other constraints.

Clearly the bounds on fk might be relaxed at your discretion.

In general, if NAG routines from the Chapter E04 are used then only local minima are found. This means
that a better solution to an individual objective might be found without worsening the optimal solutions to
the other objectives. Ideally you seek a Pareto solution; one in which an improvement in one objective can
only be achieved by a worsening of another objective.

To obtain a Pareto solution routines from Chapter E05 might be used or, alternatively, a pragmatic attempt
to derive a global minimum might be tried (see E05UCF). In this approach a variety of different minima
are computed for each subproblem by starting from a range of different starting points. The best solution
achieved is taken to be the global minimum. The more starting points chosen the greater confidence you
might have in the computed global minimum.

2.5 Scaling

Scaling (in a broadly defined sense) often has a significant influence on the performance of optimization
methods. Since convergence tolerances and other criteria are necessarily based on an implicit definition of
‘small’ and ‘large’, problems with unusual or unbalanced scaling may cause difficulties for some
algorithms. Although there are currently no user-callable scaling routines in the Library, scaling is

Introduction – E04 NAG Library Manual

E04.10 Mark 24



automatically performed by default in the routines which solve sparse LP, QP or NLP problems and in
some newer dense solver routines. The following sections present some general comments on problem
scaling.

2.5.1 Transformation of variables

One method of scaling is to transform the variables from their original representation, which may reflect
the physical nature of the problem, to variables that have certain desirable properties in terms of
optimization. It is generally helpful for the following conditions to be satisfied:

(i) the variables are all of similar magnitude in the region of interest;

(ii) a fixed change in any of the variables results in similar changes in F xð Þ. Ideally, a unit change in any
variable produces a unit change in F xð Þ;

(iii) the variables are transformed so as to avoid cancellation error in the evaluation of F xð Þ.
Normally, you should restrict yourself to linear transformations of variables, although occasionally
nonlinear transformations are possible. The most common such transformation (and often the most
appropriate) is of the form

xnew ¼ Dxold,

where D is a diagonal matrix with constant coefficients. Our experience suggests that more use should be
made of the transformation

xnew ¼ Dxold þ v,

where v is a constant vector.

Consider, for example, a problem in which the variable x3 represents the position of the peak of a
Gaussian curve to be fitted to data for which the extreme values are 150 and 170; therefore x3 is known to
lie in the range 150–170. One possible scaling would be to define a new variable �x3, given by

�x3 ¼
x3

170
.

A better transformation, however, is given by defining �x3 as

�x3 ¼
x3 � 160

10
.

Frequently, an improvement in the accuracy of evaluation of F xð Þ can result if the variables are scaled
before the routines to evaluate F xð Þ are coded. For instance, in the above problem just mentioned of
Gaussian curve-fitting, x3 may always occur in terms of the form x3 � xmð Þ, where xm is a constant
representing the mean peak position.

2.5.2 Scaling the objective function

The objective function has already been mentioned in the discussion of scaling the variables. The solution
of a given problem is unaltered if F xð Þ is multiplied by a positive constant, or if a constant value is added
to F xð Þ. It is generally preferable for the objective function to be of the order of unity in the region of

interest; thus, if in the original formulation F xð Þ is always of the order of 10þ5 (say), then the value of

F xð Þ should be multiplied by 10�5 when evaluating the function within an optimization routine. If a
constant is added or subtracted in the computation of F xð Þ, usually it should be omitted, i.e., it is better to

formulate F xð Þ as x2
1 þ x2

2 rather than as x2
1 þ x2

2 þ 1000 or even x2
1 þ x2

2 þ 1. The inclusion of such a
constant in the calculation of F xð Þ can result in a loss of significant figures.

2.5.3 Scaling the constraints

A ‘well scaled’ set of constraints has two main properties. Firstly, each constraint should be well-
conditioned with respect to perturbations of the variables. Secondly, the constraints should be balanced
with respect to each other, i.e., all the constraints should have ‘equal weight’ in the solution process.

The solution of a linearly- or nonlinearly-constrained problem is unaltered if the ith constraint is multiplied
by a positive weight wi. At the approximation of the solution determined by a Library routine, any active

E04 – Minimizing or Maximizing a Function Introduction – E04

Mark 24 E04.11



linear constraints will (in general) be satisfied ‘exactly’ (i.e., to within the tolerance defined by machine
precision) if they have been properly scaled. This is in contrast to any active nonlinear constraints, which

will not (in general) be satisfied ‘exactly’ but will have ‘small’ values (for example, ĉ1 x
�ð Þ ¼ 10�8,

ĉ2 x
�ð Þ ¼ �10�6, and so on). In general, this discrepancy will be minimized if the constraints are weighted

so that a unit change in x produces a similar change in each constraint.

A second reason for introducing weights is related to the effect of the size of the constraints on the
Lagrange multiplier estimates and, consequently, on the active set strategy. This means that different sets
of weights may cause an algorithm to produce different sequences of iterates. Additional discussion is
given in Gill et al. (1981).

2.6 Analysis of Computed Results

2.6.1 Convergence criteria

The convergence criteria inevitably vary from routine to routine, since in some cases more information is
available to be checked (for example, is the Hessian matrix positive definite?), and different checks need to
be made for different problem categories (for example, in constrained minimization it is necessary to verify
whether a trial solution is feasible). Nonetheless, the underlying principles of the various criteria are the
same; in non-mathematical terms, they are:

(i) is the sequence x kð Þ
n o

converging?

(ii) is the sequence F kð Þ
n o

converging?

(iii) are the necessary and sufficient conditions for the solution satisfied?

The decision as to whether a sequence is converging is necessarily speculative. The criterion used in the
present routines is to assume convergence if the relative change occurring between two successive
iterations is less than some prescribed quantity. Criterion (iii) is the most reliable but often the conditions
cannot be checked fully because not all the required information may be available.

2.6.2 Checking results

Little a priori guidance can be given as to the quality of the solution found by a nonlinear optimization
algorithm, since no guarantees can be given that the methods will not fail. Therefore, you should always
check the computed solution even if the routine reports success. Frequently a ‘solution’ may have been
found even when the routine does not report a success. The reason for this apparent contradiction is that
the routine needs to assess the accuracy of the solution. This assessment is not an exact process and
consequently may be unduly pessimistic. Any ‘solution’ is in general only an approximation to the exact
solution, and it is possible that the accuracy you have specified is too stringent.

Further confirmation can be sought by trying to check whether or not convergence tests are almost
satisfied, or whether or not some of the sufficient conditions are nearly satisfied. When it is thought that a
routine has returned a nonzero value of IFAIL only because the requirements for ‘success’ were too
stringent it may be worth restarting with increased convergence tolerances.

For nonlinearly-constrained problems, check whether the solution returned is feasible, or nearly feasible; if
not, the solution returned is not an adequate solution.

Confidence in a solution may be increased by resolving the problem with a different initial approximation
to the solution. See Section 8.3 of Gill et al. (1981) for further information.

2.6.3 Monitoring progress

Many of the routines in the chapter have facilities to allow you to monitor the progress of the minimization
process, and you are encouraged to make use of these facilities. Monitoring information can be a great aid
in assessing whether or not a satisfactory solution has been obtained, and in indicating difficulties in the
minimization problem or in the ability of the routine to cope with the problem.

The behaviour of the function, the estimated solution and first derivatives can help in deciding whether a
solution is acceptable and what to do in the event of a return with a nonzero value of IFAIL.

Introduction – E04 NAG Library Manual

E04.12 Mark 24



2.6.4 Confidence intervals for least squares solutions

When estimates of the parameters in a nonlinear least squares problem have been found, it may be
necessary to estimate the variances of the parameters and the fitted function. These can be calculated from
the Hessian of F xð Þ at the solution.

In many least squares problems, the Hessian is adequately approximated at the solution by G ¼ 2JTJ (see
Section 2.4.3). The Jacobian, J , or a factorization of J is returned by all the comprehensive least squares
routines and, in addition, a routine is available in the Library to estimate variances of the parameters

following the use of most of the nonlinear least squares routines, in the case that G ¼ 2JTJ is an adequate
approximation.

Let H be the inverse of G, and S be the sum of squares, both calculated at the solution �x; an unbiased
estimate of the variance of the ith parameter xi is

var �xi ¼ 2S
m� nHii

and an unbiased estimate of the covariance of �xi and �xj is

covar �xi; �xj
� �

¼ 2S
m� nHij.

If x� is the true solution, then the 100 1� �ð Þ% confidence interval on �x is

�xi �
ffiffiffiffiffiffiffiffiffiffiffiffi
var �xi
p

:t 1��=2;m�nð Þ < x�i < �xi þ
ffiffiffiffiffiffiffiffiffiffiffiffi
var �xi
p

:t 1��=2;m�nð Þ, i ¼ 1; 2; . . . ; n

where t 1��=2;m�nð Þ is the 100 1� �ð Þ=2 percentage point of the t-distribution with m� n degrees of
freedom.

In the majority of problems, the residuals fi, for i ¼ 1; 2; . . . ;m, contain the difference between the values
of a model function � z; xð Þ calculated for m different values of the independent variable z, and the
corresponding observed values at these points. The minimization process determines the parameters, or
constants x, of the fitted function � z; xð Þ. For any value, �z, of the independent variable z, an unbiased
estimate of the variance of � is

var � ¼ 2S
m� n

Xn
i¼1

Xn
j¼1

@�
@xi

� �
�z

@�
@xj

� �
�z

Hij.

The 100 1� �ð Þ% confidence interval on F at the point �z is

� �z; �xð Þ �
ffiffiffiffiffiffiffiffiffiffi
var �

p
:t �=2;m�nð Þ < � �z; x�ð Þ < � �z; �xð Þ þ

ffiffiffiffiffiffiffiffiffiffi
var �

p
:t �=2;m�nð Þ.

For further details on the analysis of least squares solutions see Bard (1974) and Wolberg (1967).

3 Recommendations on Choice and Use of Available Routines

The choice of routine depends on several factors: the type of problem (unconstrained, etc.); the level of
derivative information available (function values only, etc.); your experience (there are easy-to-use versions
of some routines); whether or not storage is a problem; whether or not the routine is to be used in a
multithreaded environment; and whether computational time has a high priority. Not all choices are
catered for in the current version of the Library.

3.1 Easy-to-use and Comprehensive Routines

Many routines appear in the Library in two forms: a comprehensive form and an easy-to-use form. The
objective in the easy-to-use forms is to make the routine simple to use by including in the calling sequence
only those parameters absolutely essential to the definition of the problem, as opposed to parameters
relevant to the solution method. If you are an experienced user the comprehensive routines have additional
parameters which enable you to improve their efficiency by ‘tuning’ the method to a particular problem. If
you are a casual or inexperienced user, this feature is of little value and may in some cases cause a failure
because of a poor choice of some parameters.

In the easy-to-use routines, these extra parameters are determined either by fixing them at a known safe
and reasonably efficient value, or by an auxiliary routine which generates a ‘good’ value automatically.

E04 – Minimizing or Maximizing a Function Introduction – E04

Mark 24 E04.13



For routines introduced since Mark 12 of the Library a different approach has been adopted towards the
choice of easy-to-use and comprehensive routines. The optimization routine has an easy-to-use parameter
list, but additional parameters may be changed from their default values by calling an ‘option’ setting
routine before the call to the main optimization routine. This approach has the advantages of allowing the
options to be given in the form of keywords and requiring only those options that are to be different from
their default values to be set.

3.2 Thread Safe Routines

Many of the routines in this chapter come in pairs, with each routine in the pair having exactly the same
functionality, except that one of them has additional parameters in order to make it safe for use in
multithreaded applications. The routine that is safe for use in multithreaded applicatons has an ‘A’ as the
last character in the name, in place of the usual ‘F’.

An example of such a pair is E04ABA and E04ABF.

All ‘F’ routines not scheduled for withdrawal from the Library and where there is no ‘A’ version of that
routine are threadsafe provided that the implementation as a whole is considered threadsafe (refer to the
Users’ Note for your implementation).

3.3 Reverse Communication Routines

Most of the routines in this chapter are called just once in order to compute the minimum of a given
objective function subject to a set of constraints on the variables. The objective function and nonlinear
constraints (if any) are specified by you and written as subroutines to a very rigid format described in the
relevant routine document.

For the majority of applications this is the simplest and most convenient usage. Sometimes however this
approach can be restrictive:

(i) when the required format of the subroutine does not allow useful information to be passed
conveniently to and from your calling program;

(ii) when the minimization routine is being called from another computer language, such as Visual Basic,
which does not fully support procedure arguments in a way that is compatible with the Library.

A way around these problems is to utilize reverse communication routines. Instead of performing
complete optimizations, these routines perform one step in the solution process before returning to the
calling program with an appropriate flag (IREVCM) set. The value of IREVCM determines whether the
minimization process has finished or whether fresh information is required. In the latter case you calculate
this information (in the form of a vector or as a scalar, as appropriate) and re-enter the reverse
communication routine with the information contained in appropriate arguments. Thus you have the
responsibility for providing the iterative loop in the minimization process, but as compensation, you have
an extremely flexible and basic user-interface to the reverse communication routine.

The only reverse communication routines in this chapter are E04UFF/E04UFA, which solve dense NLP
problems using a sequential quadratic programming method.

3.4 Service Routines

One of the most common errors in the use of optimization routines is that user-supplied subroutines do not
evaluate the relevant partial derivatives correctly. Because exact gradient information normally enhances
efficiency in all areas of optimization, you are encouraged to provide analytical derivatives whenever
possible. However, mistakes in the computation of derivatives can result in serious and obscure run-time
errors. Consequently, service routines are provided to perform an elementary check on the gradients you
supplied. These routines are inexpensive to use in terms of the number of calls they require to user-
supplied subroutines.

The appropriate checking routines are as follows:

Introduction – E04 NAG Library Manual

E04.14 Mark 24



Minimization routine Checking routine(s)

E04KDF E04HCF
E04LBF E04HCF and E04HDF
E04GBF E04YAF
E04GDF E04YAF
E04HEF E04YAF and E04YBF

It should be noted that routines E04UFF/E04UFA, E04USF/E04USA, E04VHF and E04WDF each
incorporate a check on the gradients being supplied. This involves verifying the gradients at the first point
that satisfies the linear constraints and bounds. There is also an option to perform a more reliable (but
more expensive) check on the individual gradient elements being supplied. Note that the checks are not
infallible.

A second type of service routine computes a set of finite differences to be used when approximating first
derivatives. Such differences are required as input parameters by some routines that use only function
evaluations.

E04YCF estimates selected elements of the variance-covariance matrix for the computed regression
parameters following the use of a nonlinear least squares routine.

E04XAF/E04XAA estimates the gradient and Hessian of a function at a point, given a routine to calculate
function values only, or estimates the Hessian of a function at a point, given a routine to calculate function
and gradient values.

3.5 Function Evaluations at Infeasible Points

All the routines for constrained problems will ensure that any evaluations of the objective function occur at
points which approximately satisfy any simple bounds or linear constraints. Satisfaction of such
constraints is only approximate because routines which estimate derivatives by finite differences may
require function evaluations at points which just violate such constraints even though the current iteration
just satisfies them.

There is no attempt to ensure that the current iteration satisfies any nonlinear constraints. If you wish to
prevent your objective function being evaluated outside some known region (where it may be undefined or
not practically computable), you may try to confine the iteration within this region by imposing suitable
simple bounds or linear constraints (but beware as this may create new local minima where these
constraints are active).

Note also that some routines allow you to return the parameter (IFLAG or MODE) with a negative value
to force an immediate clean exit from the minimization routine when the objective function (or nonlinear
constraints where appropriate) cannot be evaluated.

3.6 Related Problems

Apart from the standard types of optimization problem, there are other related problems which can be
solved by routines in this or other chapters of the Library.

H02BBF solves dense integer LP problems, H02CBF solves dense integer QP problems, H02CEF solves
sparse integer QP problems and H03ABF solves a special type of such problem known as a
‘transportation’ problem.

Several routines in Chapters F04 and F08 solve linear least squares problems, i.e., minimize
Xm
i¼1

ri xð Þ2

where ri xð Þ ¼ bi �
Xn
j¼1

aijxj.

E02GAF solves an overdetermined system of linear equations in the l1 norm, i.e., minimizes
Xm
i¼1

ri xð Þj j,

with ri as above, and E02GBF solves the same problem subject to linear inequality constraints.

E04 – Minimizing or Maximizing a Function Introduction – E04

Mark 24 E04.15



E02GCF solves an overdetermined system of linear equations in the l1 norm, i.e., minimizes max
i
ri xð Þj j,

with ri as above.

Chapter E05 contains routines for global minimization.

Section 2.4.5 describes how a multi-objective optimization problem might be addressed using routines
from this chapter and from Chapter E05.

3.7 Choosing Between Variant Routines for Some Problems

As evidenced by the wide variety of routines available in Chapter E04, it is clear that no single algorithm
can solve all optimization problems. It is important to try to match the problem to the most suitable
routine, and that is what the decision trees in Section 4 help to do.

Sometimes in Chapter E04 more than one routine is available to solve precisely the same minimization
problem. Thus, for example, the general nonlinear programming routines E04UCF/E04UCA and E04WDF
are based on similar methods. Experience shows that although both routines can usually solve the same
problem and get similar results, sometimes one routine will be faster, sometimes one might find a different
local minimum to the other, or, in difficult cases, one routine may obtain a solution when the other one
fails.

After using one of these routines, if the results obtained are unacceptable for some reason, it may be
worthwhile trying the other routine instead. In the absence of any other information, in the first instance
you are recommended to try using E04UCF/E04UCA, and if that proves unsatisfactory, try using
E04WDF. Although the algorithms used are very similar, the two routines each have slightly different
optional arguments which may allow the course of the computation to be altered in different ways.

Other pairs of routines which solve the same kind of problem are E04NKF/E04NKA or E04NQF, for
sparse quadratic or linear programming problems, and E04UGF/E04UGA or E04VHF, for sparse nonlinear
programming. In these cases the argument lists are not so similar as E04UCF/E04UCA or E04WDF, but
the same considerations apply.

Introduction – E04 NAG Library Manual

E04.16 Mark 24



4 Decision Trees

Tree 1: Selection chart for unconstrained problems

Only one variable?
yes

Are first derivatives
available? yes

E04BBF

no

E04ABF

no

Does the function
have many
discontinuities?

yes
E04CBF

no

Is store size a
problem? yes

E04DGF

no

Is the function a sum
of squares? yes

Are you an
experienced user? yes

Are first derivatives
available? yes

Are second
derivatives available? yes

E04HEF

no

Are there more than
ten variables? yes

E04GBF

no

E04GDF

no

E04FCF

no

Are first derivatives
available? yes

Are second
derivatives available? yes

E04HYF

no

Are there more than
ten variables? yes

E04GYF

no

E04GZF

no

E04FYF

no

Are you an
experienced user? yes

Are first derivatives
available? yes

Are second
derivatives available? yes

E04LBF

no

Is computational cost
critical? yes

E04UCF, E04UFF,
E04UGF, E04VHF or

E04WDF

no

E04KDF

no

E04UCF, E04UFF,
E04UGF, E04VHF or

E04WDF

no

Are first derivatives
available? yes

Are second
derivatives available? yes

E04LYF

no

Is computational cost
critical? yes

E04KYF

no

E04KZF

no

E04JYF

E04 – Minimizing or Maximizing a Function Introduction – E04

Mark 24 E04.17



Tree 2: Selection chart for bound-constrained, linearly-constrained and nonlinearly-constrained
problems

Are there any
nonlinear constraints? yes

Is the objective
function a sum of
squares? (A least
squares problem)

yes
E04USF

no

Are the constraints
sparse? yes

E04UGF or E04VHF

no

E04UCF, E04UFF or
E04WDF

no

Is the objective
function linear? (An
LP problem)

yes
See Tree 3

no

Is the objective
function quadratic? (A
QP or least squares
problem)

yes
Is the problem a least
squares problem? yes

Are the constraints
simple bounds? yes

E04PCF

no

E04NCF

no

See Tree 4

no

Is the objective
function a sum of
squares? (A least
squares problem)

yes
E04USF

no

Are the constraints
simple bounds? yes

Are you an
experienced user? yes

Are first derivatives
available? yes

Are second
derivatives available? yes

E04LBF

no

E04KDF, E04UCF,
E04UFF, E04UGF or

E04VHF

no

E04UCF, E04UFF,
E04UGF, E04VHF or

E04WDF

no

Are first derivatives
available? yes

Are second
derivatives available? yes

E04LYF

no

Is computational cost
critical? yes

E04KYF

no

E04KZF

no

E04JCF or E04JYF

no

E04UCF, E04UFF,
E04UGF or E04VHF

Introduction – E04 NAG Library Manual

E04.18 Mark 24



Tree 3: Linear programming

Is the objective function linear (an LP
problem) and is the linear constraint
matrix sparse?

yes
E04NKF, E04NQF, E04UGF or E04VHF

no

E04MFF

Tree 4: Quadratic programming

Is the linear constraint matrix sparse?
yes

E04NKF, E04NQF, E04UGF or E04VHF

no

Is the problem a convex QP problem?
yes

E04NCF

no

E04NFF

5 Functionality Index

Constrained minimum of a sum of squares, nonlinear constraints,
using function values and optionally first derivatives, sequential QP method,

dense .................................................................................................................................... E04USF

Convex QP problem or linearly-constrained linear least squares problem (dense).................... E04NCF

Linear least squares with bounds on the variables ...................................................................... E04PCF

Linear programming (LP) problem (dense) .................................................................................. E04MFF

LP or QP problem (sparse) ........................................................................................................... E04NKF

LP or QP problem (sparse) (recommended – see Section 3.7) .................................................. E04NQF

Minimum, function of one variable,
using first derivative.................................................................................................................. E04BBF
using function values only........................................................................................................ E04ABF

Minimum, function of several variables, nonlinear constraints,
using function values and optionally first derivatives, sequential QP method,

dense .................................................................................................................................... E04WDF
dense (recommended – see Section 3.7) ........................................................................... E04UCF
sparse.................................................................................................................................... E04VHF
sparse (recommended – see Section 3.7)........................................................................... E04UGF

Minimum, function of several variables, nonlinear constraints (comprehensive),
using function values and optionally first derivatives, sequential QP method,

reverse communication (dense)........................................................................................... E04UFF

Minimum, function of several variables, simple bounds,
using first and second derivatives, modified Newton algorithm ............................................ E04LBF

Minimum, function of several variables, simple bounds (comprehensive),
using first derivatives, modified Newton algorithm ................................................................ E04KDF

Minimum, function of several variables, simple bounds (easy-to-use),
using first and second derivatives, modified Newton algorithm ............................................ E04LYF

E04 – Minimizing or Maximizing a Function Introduction – E04

Mark 24 E04.19



using first derivatives,
modified Newton algorithm ................................................................................................ E04KZF
quasi-Newton algorithm ...................................................................................................... E04KYF

using function values only, by quadratic approximation ........................................................ E04JCF
using function values only, quasi-Newton algorithm .............................................................. E04JYF

Quadratic programming (QP) problem (dense) ............................................................................ E04NFF

Service routines,
check user’s routine for calculating,

first derivatives of function................................................................................................. E04HCF
Hessian of a sum of squares .............................................................................................. E04YBF
Jacobian of first derivatives ................................................................................................ E04YAF
second derivatives of function............................................................................................ E04HDF

convert MPS data file defining LP or QP problem to format required by E04NQF
(recommended) .......................................................................................................................... E04MXF
covariance matrix for nonlinear least squares problem........................................................... E04YCF
determine Jacobian sparsity structure before a call of E04VHF............................................ E04VJF
estimate gradient and/or Hessian of a function....................................................................... E04XAF
initialization routine for,

E04DGA, E04MFA, E04NCA, E04NFA, E04UFA, E04UGA and E04USA ................. E04WBF
E04NQF ............................................................................................................................... E04NPF
E04VHF ............................................................................................................................... E04VGF
E04WDF .............................................................................................................................. E04WCF

retrieve integer optional parameter values used by,
E04NQF ............................................................................................................................... E04NXF
E04VHF ............................................................................................................................... E04VRF
E04WDF .............................................................................................................................. E04WKF

retrieve real optional parameter values used by,
E04NQF ............................................................................................................................... E04NYF
E04VHF ............................................................................................................................... E04VSF
E04WDF .............................................................................................................................. E04WLF

supply integer optional parameter values to,
E04NQF ............................................................................................................................... E04NTF
E04VHF ............................................................................................................................... E04VMF
E04WDF .............................................................................................................................. E04WGF

supply optional parameter values from external file for,
E04DGF/E04DGA............................................................................................................... E04DJF
E04MFF/E04MFA ............................................................................................................... E04MGF
E04NCF/E04NCA ............................................................................................................... E04NDF
E04NFF/E04NFA................................................................................................................. E04NGF
E04NKF/E04NKA............................................................................................................... E04NLF
E04NQF ............................................................................................................................... E04NRF
E04UCF/E04UCA ............................................................................................................... E04UDF
E04UGF/E04UGA............................................................................................................... E04UHF
E04USF/E04USA ................................................................................................................ E04UQF
E04VHF ............................................................................................................................... E04VKF
E04WDF .............................................................................................................................. E04WEF

supply optional parameter values to,
E04DGF/E04DGA............................................................................................................... E04DKF
E04MFF/E04MFA ............................................................................................................... E04MHF
E04NCF/E04NCA ............................................................................................................... E04NEF
E04NFF/E04NFA................................................................................................................. E04NHF
E04NKF/E04NKA............................................................................................................... E04NMF
E04NQF ............................................................................................................................... E04NSF
E04UCF/E04UCA ............................................................................................................... E04UEF
E04UGF/E04UGA............................................................................................................... E04UJF
E04USF/E04USA ................................................................................................................ E04URF
E04VHF ............................................................................................................................... E04VLF

Introduction – E04 NAG Library Manual

E04.20 Mark 24



E04WDF .............................................................................................................................. E04WFF
supply real optional parameter values to,

E04NQF ............................................................................................................................... E04NUF
E04VHF ............................................................................................................................... E04VNF
E04WDF .............................................................................................................................. E04WHF

Unconstrained minimum, function of several variables,
using first derivatives, pre-conditioned conjugate gradient algorithm.................................... E04DGF
using function values only, simplex algorithm........................................................................ E04CBF

Unconstrained minimum of a sum of squares (comprehensive):
using first derivatives,

combined Gauss–Newton and modified Newton algorithm.............................................. E04GDF
combined Gauss–Newton and quasi-Newton algorithm.................................................... E04GBF

using function values only,
combined Gauss–Newton and modified Newton algorithm.............................................. E04FCF

using second derivatives,
combined Gauss–Newton and modified Newton algorithm.............................................. E04HEF

Unconstrained minimum of a sum of squares (easy-to-use):
using first derivatives,

combined Gauss–Newton and modified Newton algorithm.............................................. E04GZF
combined Gauss–Newton and quasi-Newton algorithm.................................................... E04GYF

using function values only,
combined Gauss–Newton and modified Newton algorithm.............................................. E04FYF

using second derivatives,
combined Gauss–Newton and modified Newton algorithm.............................................. E04HYF

6 Auxiliary Routines Associated with Library Routine Parameters

E04CBK nagf_opt_uncon_simplex_dummy_monit
See the description of the argument MONIT in E04CBF.

E04FCV nagf_opt_lsq_uncon_quasi_deriv_comp_lsqlin_fun
See the description of the argument LSQLIN in E04GBF.

E04FDZ nagf_opt_lsq_dummy_lsqmon
See the description of the argument LSQMON in E04FCF, E04GDF and E04HEF.

E04HEV nagf_opt_lsq_uncon_quasi_deriv_comp_lsqlin_deriv
See the description of the argument LSQLIN in E04GBF.

E04JCP nagf_opt_bounds_bobyqa_func_dummy_monfun
See the description of the argument MONFUN in E04JCF.

E54NFU nagf_opt_qp_dense_sample_qphess
See the description of the argument QPHESS in E04NFF/E04NFA and H02CBF.

E04NFU nagf_opt_qp_dense_sample_qphess_old
See the description of the argument QPHESS in E04NFF/E04NFA and H02CBF.

E54NKU nagf_opt_qpconvex1_sparse_dummy_qphx
See the description of the argument QPHX in E04NKF/E04NKA and H02CEF.

E04NKU nagf_opt_qpconvex1_sparse_dummy_qphx_old
See the description of the argument QPHX in E04NKF/E04NKA and H02CEF.

E04NSH nagf_opt_qpconvex2_sparse_dummy_qphx
See the description of the argument QPHX in E04NQF.

E04UDM nagf_opt_nlp1_dummy_confun
See the description of the argument CONFUN in E04UCF/E04UCA and E04USF/E04USA.

E04 – Minimizing or Maximizing a Function Introduction – E04

Mark 24 E04.21



E04UGN nagf_opt_nlp1_sparse_dummy_objfun
See the description of the argument OBJFUN in E04UGF/E04UGA.

E04UGM nagf_opt_nlp1_sparse_dummy_confun
See the description of the argument CONFUN in E04UGF/E04UGA.

E04WDP nagf_opt_nlp2_dummy_confun
See the description of the argument CONFUN in E04WDF.

7 Routines Withdrawn or Scheduled for Withdrawal

The following lists all those routines that have been withdrawn since Mark 17 of the Library or are
scheduled for withdrawal at one of the next two marks.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

E04CCF/E04CCA 24 E04CBF
E04FDF 19 E04FYF
E04GCF 19 E04GYF
E04GEF 19 E04GZF
E04HFF 19 E04HYF
E04JAF 19 E04JYF
E04KAF 19 E04KYF
E04KCF 19 E04KZF
E04LAF 19 E04LYF
E04MBF 18 E04MFF/E04MFA
E04MZF 26 E04MXF
E04NAF 18 E04NFF/E04NFA
E04UNF 22 E04USF/E04USA
E04UPF 19 E04USF/E04USA
E04VCF 17 E04UCF/E04UCA
E04VDF 17 E04UCF/E04UCA
E04ZCF/E04ZCA 24 No longer required

8 References

Bard Y (1974) Nonlinear Parameter Estimation Academic Press

Dantzig G B (1963) Linear Programming and Extensions Princeton University Press

Fletcher R (1987) Practical Methods of Optimization (2nd Edition) Wiley

Gill P E and Murray W (ed.) (1974) Numerical Methods for Constrained Optimization Academic Press

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

Murray W (ed.) (1972) Numerical Methods for Unconstrained Optimization Academic Press

Wolberg J R (1967) Prediction Analysis Van Nostrand
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Introduction – E04 NAG Library Manual

E04.22 (last) Mark 24


	E04 Chapter Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	2.1 Types of Optimization Problems
	2.1.1 Unconstrained minimization
	2.1.2 Nonlinear least squares problems
	2.1.3 Minimization subject to bounds on the variables
	2.1.4 Minimization subject to linear constraints
	2.1.5 Minimization subject to nonlinear constraints
	2.1.6 Minimization subject to bounds on the objective function
	2.1.7 Multi-objective optimization

	2.2 Geometric Representation and Terminology
	2.2.1 Gradient vector
	2.2.2 Hessian matrix
	2.2.3 Jacobian matrix; matrix of constraint normals

	2.3 Sufficient Conditions for a Solution
	2.3.1 Unconstrained minimization
	2.3.2 Minimization subject to bounds on the variables
	2.3.3 Linearly-constrained minimization
	2.3.4 Nonlinearly-constrained minimization

	2.4 Background to Optimization Methods
	2.4.1 One-dimensional optimization
	2.4.2 Methods for unconstrained optimization
	2.4.3 Methods for nonlinear least squares problems
	2.4.4 Methods for handling constraints
	2.4.5 Methods for handling multi-objective optimization

	2.5 Scaling
	2.5.1 Transformation of variables
	2.5.2 Scaling the objective function
	2.5.3 Scaling the constraints

	2.6 Analysis of Computed Results
	2.6.1 Convergence criteria
	2.6.2 Checking results
	2.6.3 Monitoring progress
	2.6.4 Confidence intervals for least squares solutions


	3 Recommendations on Choice and Use of Available Routines
	3.1 Easy-to-use and Comprehensive Routines
	3.2 Thread Safe Routines
	3.3 Reverse Communication Routines
	3.4 Service Routines
	3.5 Function Evaluations at Infeasible Points
	3.6 Related Problems
	3.7 Choosing Between Variant Routines for Some Problems

	4 Decision Trees
	5 Functionality Index
	6 Auxiliary Routines Associated with Library Routine Parameters
	7 Routines Withdrawn or Scheduled for Withdrawal
	8 References

	NAG Fortran Library Manual, Mark 24
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	NAG Fortran Library specific documentation
	 NAG Fortran Library News

	NAG SMP Library specific documentation
	Introduction to the NAG Library for SMP & Multicore
	 NAG Library for SMP & Multicore News
	Tuned and Enhanced Routines in the 

	Thread Safety
	Routines Withdrawn or Scheduled for Withdrawal
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Indexes

	Implementation-specific Details for Users
	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction




