
NAG Library Routine Document

D03UAF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D03UAF performs at each call one iteration of the Strongly Implicit Procedure. It is used to calculate on
successive calls a sequence of approximate corrections to the current estimate of the solution when solving
a system of simultaneous algebraic equations for which the iterative update matrix is of five-point molecule
form on a two-dimensional topologically-rectangular mesh. (‘Topological’ means that a polar grid r; �ð Þ,
for example, can be used as it is equivalent to a rectangular box.)

2 Specification

SUBROUTINE D03UAF (N1, N2, LDA, A, B, C, D, E, APARAM, IT, R, WRKSP1,
WRKSP2, IFAIL)

&

INTEGER N1, N2, LDA, IT, IFAIL

REAL (KIND=nag_wp) A(LDA,N2), B(LDA,N2), C(LDA,N2), D(LDA,N2), E(LDA,N2),
APARAM, R(LDA,N2), WRKSP1(LDA,N2), WRKSP2(LDA,N2)

&

3 Description

Given a set of simultaneous equations

Mt ¼ q ð1Þ
(which could be nonlinear) derived, for example, from a finite difference representation of a two-
dimensional elliptic partial differential equation and its boundary conditions, the solution t may be obtained

iteratively from a starting approximation t 1ð Þ by the formulae

r nð Þ ¼ q �Mt nð Þ

Ms nð Þ ¼ r nð Þ

t nþ1ð Þ ¼ t nð Þ þ s nð Þ.

Thus r nð Þ is the residual of the nth approximate solution t nð Þ, and s nð Þ is the update change vector.

D03UAF determines the approximate change vector s corresponding to a given residual r, i.e., it
determines an approximate solution to a set of equations

Ms ¼ r ð2Þ
where M is a square n1 � n2ð Þ by n1 � n2ð Þ matrix and r is a known vector of length n1 � n2. The set of
equations (2) must be of five-diagonal form

aijsi;j�1 þ bijsi�1;j þ cijsij þ dijsiþ1;j þ eijsi;jþ1 ¼ rij,

for i ¼ 1; 2; . . . ; n1 and j ¼ 1; 2; . . . ; n2, provided that cij 6¼ 0:0. Indeed, if cij ¼ 0:0, then the equation is
assumed to be

sij ¼ rij.

D03 – Partial Differential Equations D03UAF

Mark 24 D03UAF.1



For example, if n1 ¼ 3 and n2 ¼ 2, the equations take the form

c11 d11 e11

b21 c21 d21 e21

b31 c31 e31

a12 c12 d12

a22 b22 c22 d22

a32 b32 c32

2
6666664

3
7777775

s11

s21

s31

s12

s22

s32

2
6666664

3
7777775
¼

r11

r21

r31

r12

r22

r32

2
6666664

3
7777775

.

The calling program supplies the current residual r at each iteration and the coefficients of the five-point
molecule system of equations on which the update procedure is based. The routine performs one iteration,
using the approximate LU factorization of the Strongly Implicit Procedure with the necessary acceleration
parameter adjustment, to calculate the approximate solution s of the set of equations (2). The change s
overwrites the residual array for return to the calling program. The calling program must combine this
change stored in r with the old approximation to obtain the new approximate solution for t. It must then
recalculate the residuals and, if the accuracy requirements have not been satisfied, commence the next
iterative cycle.

Clearly there is no requirement that the iterative update matrix passed in the form of the five-diagonal
element arrays A, B, C, D and E is the same as that used to calculate the residuals, and therefore the one
governing the problem. However, the convergence may be impaired if they are not equal. Indeed, if the
system of equations (1) is not precisely of the five-diagonal form illustrated above but has a few additional
terms, then the methods of deferred or defect correction can be employed. The residual is calculated by
the calling program using the full system of equations, but the update formula is based on a five-diagonal
system (2) of the form given above. For example, the solution of a system of nine-diagonal equations each
involving the combination of terms with ti�1;j�1; ti�1;j; ti;j�1 and tij could use the five-diagonal coefficients
on which to base the update, provided these incorporate the major features of the equations.

Problems in topologically non-rectangular regions can be solved using the routine by surrounding the
region with a circumscribing topological rectangle. The equations for the nodal values external to the
region of interest are set to zero (i.e., cij ¼ rij ¼ 0) and the boundary conditions are incorporated into the
equations for the appropriate nodes.

If there is no better initial approximation when starting the iterative cycle, one can use an array of all zeros
as the initial approximation from which the first set of residuals are determined.

The routine can be used to solve linear elliptic equations in which case the arrays A, B, C, D, E and the
quantities q will be unchanged during the iterative cycles, or for solving nonlinear elliptic equations in
which case some or all of these arrays may require updating as each new approximate solution is derived.
Depending on the nonlinearity, some under-relaxation of the coefficients and/or source terms may be
needed during their recalculation using the new estimates of the solution (see Jacobs (1972)).

The routine can also be used to solve each step of a time-dependent parabolic equation in two space
dimensions. The solution at each time step can be expressed in terms of an elliptic equation if the Crank–
Nicolson or other form of implicit time integration is used.

Neither diagonal dominance, nor positive-definiteness, of the matrix M or of the update matrix formed
from the arrays A, B, C, D and E is necessary to ensure convergence.

For problems in which the solution is not unique, in the sense that an arbitrary constant can be added to
the solution (for example Laplace’s equation with all Neumann boundary conditions), the calling program
should subtract a typical nodal value from the whole solution t at every iteration to keep rounding errors to
a minimum.

4 References

Ames W F (1977) Nonlinear Partial Differential Equations in Engineering (2nd Edition) Academic Press

Jacobs D A H (1972) The strongly implicit procedure for the numerical solution of parabolic and elliptic
partial differential equations Note RD/L/N66/72 Central Electricity Research Laboratory

Stone H L (1968) Iterative solution of implicit approximations of multi-dimensional partial differential
equations SIAM J. Numer. Anal. 5 530–558

D03UAF NAG Library Manual

D03UAF.2 Mark 24



5 Parameters

1: N1 – INTEGER Input

On entry: the number of nodes in the first coordinate direction, n1.

Constraint: N1 > 1.

2: N2 – INTEGER Input

On entry: the number of nodes in the second coordinate direction, n2.

Constraint: N2 > 1.

3: LDA – INTEGER Input

On entry: the first dimension of the arrays A, B, C, D, E, R, WRKSP1 and WRKSP2 as declared in
the (sub)program from which D03UAF is called.

Constraint: LDA � N1.

4: AðLDA,N2Þ – REAL (KIND=nag_wp) array Input

On entry: Aði; jÞ must contain the coefficient of the ‘southerly’ term involving si;j�1 in the i; jð Þth
equation of the system (2), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2. The elements of A, for j ¼ 1,
must be zero after incorporating the boundary conditions, since they involve nodal values from
outside the rectangle.

5: BðLDA,N2Þ – REAL (KIND=nag_wp) array Input

On entry: Bði; jÞ must contain the coefficient of the ‘westerly’ term involving si�1;j in the i; jð Þth
equation of the system (2), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2. The elements of B, for i ¼ 1,
must be zero after incorporating the boundary conditions, since they involve nodal values from
outside the rectangle.

6: CðLDA,N2Þ – REAL (KIND=nag_wp) array Input

On entry: Cði; jÞ must contain the coefficient of the ‘central’ term involving sij in the i; jð Þth
equation of the system (2), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2. The elements of C are
checked to ensure that they are nonzero. If any element is found to be zero, the corresponding
algebraic equation is assumed to be sij ¼ rij. This feature can be used to define the equations for
nodes at which, for example, Dirichlet boundary conditions are applied, or for nodes external to the
problem of interest, by setting Cði; jÞ ¼ 0:0 at appropriate points. The corresponding value of
Rði; jÞ is set equal to the appropriate value, namely the difference between the prescribed value of
tij and the current value of tij in the Dirichlet case, or zero at an external point.

7: DðLDA,N2Þ – REAL (KIND=nag_wp) array Input

On entry: Dði; jÞ must contain the coefficient of the ‘easterly’ term involving siþ1;j in the i; jð Þth
equation of the system (2), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2. The elements of D, for
i ¼ N1, must be zero after incorporating the boundary conditions, since they involve nodal values
from outside the rectangle.

8: EðLDA,N2Þ – REAL (KIND=nag_wp) array Input

On entry: Eði; jÞ must contain the coefficient of the ‘northerly’ term involving si;jþ1 in the i; jð Þth
equation of the system (2), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2. The elements of E, for
j ¼ N2, must be zero after incorporating the boundary conditions, since they involve nodal values
from outside the rectangle.

D03 – Partial Differential Equations D03UAF

Mark 24 D03UAF.3



9: APARAM – REAL (KIND=nag_wp) Input

On entry: the iteration acceleration factor. A value of 1:0 is adequate for most typical problems.
However, if convergence is slow, the value can be reduced, typically to 0:2 or 0:1. If divergence is
obtained, the value can be increased, typically to 2:0, 5:0 or 10:0.

Constraint: 0:0 < APARAM � N1� 1ð Þ2 þ N2� 1ð Þ2
� �

=2:0.

10: IT – INTEGER Input

On entry: the iteration number. It must be initialized, but not necessarily to 1, before the first call,
and must be incremented by one in the calling program for each subsequent call. D03UAF uses the
counter to select the appropriate acceleration parameter from a sequence of nine, each one being
used twice in succession. (Note that the acceleration parameter depends on the value of APARAM.)

11: RðLDA,N2Þ – REAL (KIND=nag_wp) array Input/Output

On entry: Rði; jÞ must contain the current residual rij on the right-hand side of the i; jð Þth equation
of the system (2), for i ¼ 1; 2; . . . ;N1 and j ¼ 1; 2; . . . ;N2.

On exit: these residuals are overwritten by the corresponding components of solution s to the system
(2), i.e., the changes to be made to the vector t to reduce the residuals supplied.

12: WRKSP1ðLDA,N2Þ – REAL (KIND=nag_wp) array Workspace
13: WRKSP2ðLDA,N2Þ – REAL (KIND=nag_wp) array Workspace

14: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N1 < 2,
or N2 < 2.

IFAIL ¼ 2

On entry, LDA < N1.

IFAIL ¼ 3

On entry, APARAM � 0:0.

IFAIL ¼ 4

On entry, APARAM > N1� 1ð Þ2 þ N2� 1ð Þ2
� �

=2:0.

D03UAF NAG Library Manual

D03UAF.4 Mark 24



7 Accuracy

The improvement in accuracy for each iteration, i.e., on each call, depends on the size of the system and
on the condition of the update matrix characterised by the five-diagonal coefficient arrays. The ultimate
accuracy obtainable depends on the above factors and on the machine precision. However, since
D03UAF works with residuals and the update vector, the calling program can, in most cases where at each
iteration all the residuals are usually of about the same size, calculate the residuals from extended precision
values of the function, source term and equation coefficients if greater accuracy is required. The rate of
convergence obtained with the Strongly Implicit Procedure is not always smooth because of the cyclic use
of nine acceleration parameters. The convergence may become slow with very large problems. The final
accuracy obtained can be judged approximately from the rate of convergence determined from the changes
to the dependent variable t and in particular the change on the last iteration.

8 Further Comments

The time taken is approximately proportional to N1� N2 for each call.

When used with deferred or defect correction, the residual is calculated in the calling program from a
different system of equations to those represented by the five-point molecule coefficients used by D03UAF
as the basis of the iterative update procedure. When using deferred correction the overall rate of
convergence depends not only on the items detailed in Section 7 but also on the difference between the
two coefficient matrices used.

Convergence may not always be obtained when the problem is very large and/or the coefficients of the
equations have widely disparate values. The latter case may be associated with an ill-conditioned matrix.

9 Example

This example solves Laplace’s equation in a rectangle with a non-uniform grid spacing in the x and y
coordinate directions and with Dirichlet boundary conditions specifying the function on the perimeter of

the rectangle equal to e 1:0þxð Þ=y n2ð Þ � cos y=y n2ð Þð Þ.

9.1 Program Text

Program d03uafe

! D03UAF Example Program Text

! Mark 24 Release. NAG Copyright 2012.

! .. Use Statements ..
Use nag_library, Only: d03uaf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: adel, aparam, ares, delmax, delmn, &

resmax, resmn
Integer :: i, ifail, it, j, lda, n1, n2, nits

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:,:), c(:,:), d(:,:), &

e(:,:), q(:,:), r(:,:), t(:,:), &
wrksp1(:,:), wrksp2(:,:), x(:), y(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs, cos, exp, max, real

! .. Executable Statements ..
Write (nout,*) ’D03UAF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)

D03 – Partial Differential Equations D03UAF

Mark 24 D03UAF.5



Read (nin,*) n1, n2, nits
lda = n1
Allocate (a(lda,n2),b(lda,n2),c(lda,n2),d(lda,n2),e(lda,n2),q(lda,n2), &

r(lda,n2),t(lda,n2),wrksp1(lda,n2),wrksp2(lda,n2),x(n1),y(n2))
Read (nin,*) x(1:n1)
Read (nin,*) y(1:n2)
aparam = one

! Set up difference equation coefficients, source terms and
! initial S

a(1:n1,1:n2) = zero
b(1:n1,1:n2) = zero
d(1:n1,1:n2) = zero
e(1:n1,1:n2) = zero
q(1:n1,1:n2) = zero
t(1:n1,1:n2) = zero

! Specification for internal nodes
Do j = 2, n2 - 1

a(2:n1-1,j) = two/((y(j)-y(j-1))*(y(j+1)-y(j-1)))
e(2:n1-1,j) = two/((y(j+1)-y(j))*(y(j+1)-y(j-1)))

End Do
Do i = 2, n1 - 1

b(i,2:n2-1) = two/((x(i)-x(i-1))*(x(i+1)-x(i-1)))
d(i,2:n2-1) = two/((x(i+1)-x(i))*(x(i+1)-x(i-1)))

End Do
c(1:n1,1:n2) = -a(1:n1,1:n2) - b(1:n1,1:n2) - d(1:n1,1:n2) - &

e(1:n1,1:n2)
! Specification for boundary nodes

Do j = 1, n2
q(1,j) = exp((x(1)+one)/y(n2))*cos(y(j)/y(n2))
q(n1,j) = exp((x(n1)+one)/y(n2))*cos(y(j)/y(n2))

End Do
Do i = 1, n1

q(i,1) = exp((x(i)+one)/y(n2))*cos(y(1)/y(n2))
q(i,n2) = exp((x(i)+one)/y(n2))*cos(y(n2)/y(n2))

End Do

! Iterative loop
Do it = 1, nits

! Calculate the residuals
resmax = zero
resmn = zero
Do j = 1, n2

Do i = 1, n1
If (c(i,j)/=zero) Then

! Five point molecule formula
r(i,j) = q(i,j) - a(i,j)*t(i,j-1) - b(i,j)*t(i-1,j) - &

c(i,j)*t(i,j) - d(i,j)*t(i+1,j) - e(i,j)*t(i,j+1)
Else

! Explicit equation
r(i,j) = q(i,j) - t(i,j)

End If
ares = abs(r(i,j))
resmax = max(resmax,ares)
resmn = resmn + ares

End Do
End Do
resmn = resmn/(real(n1*n2,kind=nag_wp))

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d03uaf(n1,n2,lda,a,b,c,d,e,aparam,it,r,wrksp1,wrksp2,ifail)

If (it==1) Then
Write (nout,99997) ’Iteration’, ’Residual’, ’Change’
Write (nout,99996) ’No’, ’Max.’, ’Mean’, ’Max.’, ’Mean’

End If

! Update the dependent variable
delmax = zero

D03UAF NAG Library Manual

D03UAF.6 Mark 24



delmn = zero
Do j = 1, n2

Do i = 1, n1
t(i,j) = t(i,j) + r(i,j)
adel = abs(r(i,j))
delmax = max(delmax,adel)
delmn = delmn + adel

End Do
End Do
delmn = delmn/(real(n1*n2,kind=nag_wp))
Write (nout,99999) it, resmax, resmn, delmax, delmn

! Convergence tests here if required
End Do

! End of iterative loop
Write (nout,*)
Write (nout,*) ’Table of calculated function values’
Write (nout,*)
Write (nout,99995) ’I’, 1, (i,i=2,6)
Write (nout,*) ’ J’
Do j = 1, n2

Write (nout,99998) j, (t(i,j),i=1,n1)
End Do

99999 Format (1X,I3,4(2X,E11.4))
99998 Format (1X,I2,1X,6(F9.3,2X))
99997 Format (1X,A,6X,A,19X,A)
99996 Format (3X,A,7X,A,8X,A,11X,A,6X,A/)
99995 Format (4X,A,4X,I1,5I11)

End Program d03uafe

9.2 Program Data

D03UAF Example Program Data
6 10 10 : n1, n2, nits
0.0 1.0 3.0 6.0 10.0 15.0 : x
0.0 1.0 3.0 6.0 10.0 15.0
21.0 28.0 36.0 45.0 : y

9.3 Program Results

D03UAF Example Program Results

Iteration Residual Change
No Max. Mean Max. Mean

1 0.1427E+01 0.4790E+00 0.1427E+01 0.1031E+01
2 0.1098E-02 0.3871E-03 0.2176E-01 0.6158E-02
3 0.7364E-03 0.5926E-04 0.1621E-02 0.2475E-03
4 0.2036E-04 0.2914E-05 0.1810E-03 0.2259E-04
5 0.6946E-05 0.6214E-06 0.1199E-04 0.2347E-05
6 0.2267E-06 0.4215E-07 0.1245E-05 0.2270E-06
7 0.5625E-07 0.4500E-08 0.1081E-06 0.1761E-07
8 0.2305E-08 0.3998E-09 0.1289E-07 0.1794E-08
9 0.4733E-09 0.7397E-10 0.1422E-08 0.1841E-09

10 0.7109E-10 0.8598E-11 0.3214E-09 0.2791E-10

Table of calculated function values

I 1 2 3 4 5 6
J
1 1.022 1.045 1.093 1.168 1.277 1.427
2 1.022 1.045 1.093 1.168 1.277 1.427
3 1.020 1.043 1.091 1.166 1.274 1.424
4 1.013 1.036 1.083 1.158 1.266 1.414
5 0.997 1.020 1.066 1.140 1.246 1.392

D03 – Partial Differential Equations D03UAF

Mark 24 D03UAF.7



6 0.966 0.988 1.033 1.104 1.207 1.348
7 0.913 0.934 0.976 1.044 1.141 1.274
8 0.831 0.850 0.888 0.950 1.038 1.160
9 0.712 0.728 0.762 0.814 0.890 0.994

10 0.552 0.565 0.591 0.631 0.690 0.771

Example Program
Laplace’s Equation on a Non-uniform Grid

 0
 2

 4
 6

 8
 10

 12
 14

 16

x
 0 5 10 15 20 25 30 35 40 45

y

 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5

U

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

D03UAF NAG Library Manual

D03UAF.8 (last) Mark 24


	D03UAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	N1
	N2
	LDA
	A
	B
	C
	D
	E
	APARAM
	IT
	R
	WRKSP1
	WRKSP2
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results


	NAG Fortran Library Manual, Mark 24
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	NAG Fortran Library specific documentation
	 NAG Fortran Library News

	NAG SMP Library specific documentation
	Introduction to the NAG Library for SMP & Multicore
	 NAG Library for SMP & Multicore News
	Tuned and Enhanced Routines in the 

	Thread Safety
	Routines Withdrawn or Scheduled for Withdrawal
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Indexes

	Implementation-specific Details for Users
	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction




