
NAG Library Routine Document

D03EEF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D03EEF discretizes a second-order elliptic partial differential equation (PDE) on a rectangular region.

2 Specification

SUBROUTINE D03EEF (XMIN, XMAX, YMIN, YMAX, PDEF, BNDY, NGX, NGY, LDA, A,
RHS, SCHEME, IFAIL)

&

INTEGER NGX, NGY, LDA, IFAIL

REAL (KIND=nag_wp) XMIN, XMAX, YMIN, YMAX, A(LDA,7), RHS(LDA)

CHARACTER(1) SCHEME

EXTERNAL PDEF, BNDY

3 Description

D03EEF discretizes a second-order linear elliptic partial differential equation of the form

� x; yð Þ@
2U

@x2 þ � x; yð Þ @
2U

@x@y
þ � x; yð Þ@

2U

@y2 þ � x; yð Þ@U
@x
þ � x; yð Þ@U

@y
þ � x; yð ÞU ¼  x; yð Þ ð1Þ

on a rectangular region

xA � x � xB
yA � y � yB

subject to boundary conditions of the form

a x; yð ÞU þ b x; yð Þ@U
@n
¼ c x; yð Þ

where @U
@n

denotes the outward pointing normal derivative on the boundary. Equation (1) is said to be

elliptic if

4� x; yð Þ� x; yð Þ � � x; yð Þð Þ2

for all points in the rectangular region. The linear equations produced are in a form suitable for passing
directly to the multigrid routine D03EDF.

The equation is discretized on a rectangular grid, with nx grid points in the x-direction and ny grid points
in the y-direction. The grid spacing used is therefore

hx ¼ xB � xAð Þ= nx � 1ð Þ
hy ¼ yB � yAð Þ= ny � 1

� �
and the coordinates of the grid points xi; yj

� �
are

xi ¼ xA þ i� 1ð Þhx, i ¼ 1; 2; . . . ; nx,
yj ¼ yA þ j� 1ð Þhy, j ¼ 1; 2; . . . ; ny.

At each grid point xi; yj
� �

six neighbouring grid points are used to approximate the partial differential
equation, so that the equation is discretized on the seven-point stencil shown in Figure 1.
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Figure 1

For convenience the approximation uij to the exact solution U xi; yj
� �

is denoted by uO, and the
neighbouring approximations are labelled according to points of the compass as shown. Where numerical
labels for the seven points are required, these are also shown.

The following approximations are used for the second derivatives:

@2U

@x2 ’ 1

h2
x

uE � 2uO þ uWð Þ

@2U

@y2 ’ 1

h2
y

uN � 2uO þ uSð Þ

@2U
@x@y

’ 1

2hxhy
uN � uNW þ uE � 2uO þ uW � uSE þ uSð Þ.

Two possible schemes may be used to approximate the first derivatives:

Central Differences

@U
@x

’ 1

2hx
uE � uWð Þ

@U
@y

’ 1

2hy
uN � uSð Þ

Upwind Differences

@U
@x

’ 1

hx
uO � uWð Þ if � x; yð Þ > 0

@U
@x

’ 1

hx
uE � uOð Þ if � x; yð Þ < 0

@U
@y

’ 1

hy
uN � uOð Þ if � x; yð Þ > 0

@U
@y

’ 1

hy
uO � uSð Þ if � x; yð Þ < 0.

Central differences are more accurate than upwind differences, but upwind differences may lead to a more
diagonally dominant matrix for those problems where the coefficients of the first derivatives are
significantly larger than the coefficients of the second derivatives.

The approximations used for the first derivatives may be written in a more compact form as follows:

@U
@x

’ 1

2hx
kx � 1ð ÞuW � 2kxuO þ kx þ 1ð ÞuEð Þ

@U
@y

’ 1

2hy
ky � 1
� �

uS � 2kyuO þ ky þ 1
� �

uN

� �
where kx ¼ sign � and ky ¼ sign � for upwind differences, and kx ¼ ky ¼ 0 for central differences.

At all points in the rectangular domain, including the boundary, the coefficients in the partial differential
equation are evaluated by calling PDEF, and applying the approximations. This leads to a seven-diagonal
system of linear equations of the form:
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A6
ijui�1;jþ1 þ A7

ijui;jþ1

þ A3
ijui�1;j þ A4

ijuij þ A5
ijuiþ1;j

þ A1
ijui;j�1 þ A2

ijuiþ1;j�1 ¼ fij, i ¼ 1; 2; . . . ; nx and j ¼ 1; 2; . . . ; ny,

where the coefficients are given by

A1
ij ¼ � xi; yj

� � 1

2hxhy
þ � xi; yj
� � 1

h2
y

þ � xi; yj
� � 1

2hy
ky � 1
� �

A2
ij ¼ �� xi; yj

� � 1

2hxhy

A3
ij ¼ � xi; yj

� � 1

h2
x

þ � xi; yj
� � 1

2hxhy
þ � xi; yj
� � 1

2hx
kx � 1ð Þ

A4
ij ¼ �� xi; yj

� � 2

h2
x

� � xi; yj
� � 1

hxhy
� � xi; yj
� � 2

h2
y

� � xi; yj
� �ky

hx
� � xi; yj
� �ky

hy
� � xi; yj

� �
A5
ij ¼ � xi; yj

� � 1

h2
x

þ � xi; yj
� � 1

2hxhy
þ � xi; yj
� � 1

2hx
kx þ 1ð Þ

A6
ij ¼ �� xi; yj

� � 1

2hxhy

A7
ij ¼ � xi; yj

� � 1

2hxhy
þ � xi; yj
� � 1

h2
y

þ � xi; yj
� � 1

2hy
ky þ 1
� �

fij ¼  xi; yj
� �

These equations then have to be modified to take account of the boundary conditions. These may be
Dirichlet (where the solution is given), Neumann (where the derivative of the solution is given), or mixed
(where a linear combination of solution and derivative is given).

If the boundary conditions are Dirichlet, there are an infinity of possible equations which may be applied:

�uij ¼ �fij; � 6¼ 0. ð2Þ
If D03EDF is used to solve the discretized equations, it turns out that the choice of � can have a dramatic
effect on the rate of convergence, and the obvious choice � ¼ 1 is not the best. Some choices may even
cause the multigrid method to fail altogether. In practice it has been found that a value of the same order
as the other diagonal elements of the matrix is best, and the following value has been found to work well
in practice:

� ¼ min ij � 2

h2
x

þ 2

h2
y

( )
; A4

ij

 !
.

If the boundary conditions are either mixed or Neumann (i.e., B 6¼ 0 on return from BNDY), then one of
the points in the seven-point stencil lies outside the domain. In this case the normal derivative in the
boundary conditions is used to eliminate the ‘fictitious’ point, uoutside:

@U
@n
’ 1

2h
uoutside � uinsideð Þ. ð3Þ

It should be noted that if the boundary conditions are Neumann and � x; yð Þ � 0, then there is no unique
solution. The routine returns with IFAIL ¼ 5 in this case, and the seven-diagonal matrix is singular.

The four corners are treated separately. BNDY is called twice, once along each of the edges meeting at the
corner. If both boundary conditions at this point are Dirichlet and the prescribed solution values agree,
then this value is used in an equation of the form (2). If the prescribed solution is discontinuous at the
corner, then the average of the two values is used. If one boundary condition is Dirichlet and the other is
mixed, then the value prescribed by the Dirichlet condition is used in an equation of the form given above.
Finally, if both conditions are mixed or Neumann, then two ‘fictitious’ points are eliminated using two
equations of the form (3).

It is possible that equations for which the solution is known at all points on the boundary, have coefficients
which are not defined on the boundary. Since this routine calls PDEF at all points in the domain,
including boundary points, arithmetic errors may occur in PDEF which this routine cannot trap. If you
have an equation with Dirichlet boundary conditions (i.e., B ¼ 0 at all points on the boundary), but with
PDE coefficients which are singular on the boundary, then D03EDF could be called directly only using
interior grid points at your discretization.
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After the equations have been set up as described above, they are checked for diagonal dominance. That is
to say,

A4
ij

�� �� >X
k 6¼4

Ak
ij

�� ��, i ¼ 1; 2; . . . ; nx and j ¼ 1; 2; . . . ; ny.

If this condition is not satisfied then the routine returns with IFAIL ¼ 6. The multigrid routineD03EDF
may still converge in this case, but if the coefficients of the first derivatives in the partial differential
equation are large compared with the coefficients of the second derivative, you should consider using
upwind differences (SCHEME ¼ U ).

Since this routine is designed primarily for use with D03EDF, this document should be read in conjunction
with the document for that routine.

4 References

Wesseling P (1982) MGD1 – a robust and efficient multigrid method Multigrid Methods. Lecture Notes in
Mathematics 960 614–630 Springer–Verlag

5 Parameters

1: XMIN – REAL (KIND=nag_wp) Input
2: XMAX – REAL (KIND=nag_wp) Input

On entry: the lower and upper x coordinates of the rectangular region respectively, xA and xB.

Constraint: XMIN < XMAX.

3: YMIN – REAL (KIND=nag_wp) Input
4: YMAX – REAL (KIND=nag_wp) Input

On entry: the lower and upper y coordinates of the rectangular region respectively, yA and yB.

Constraint: YMIN < YMAX.

5: PDEF – SUBROUTINE, supplied by the user. External Procedure

PDEF must evaluate the functions � x; yð Þ, � x; yð Þ, � x; yð Þ, � x; yð Þ, � x; yð Þ, � x; yð Þ and  x; yð Þ
which define the equation at a general point x; yð Þ.

The specification of PDEF is:

SUBROUTINE PDEF (X, Y, ALPHA, BETA, GAMMA, DELTA, EPSLON, PHI, PSI)

REAL (KIND=nag_wp) X, Y, ALPHA, BETA, GAMMA, DELTA, EPSLON, PHI,
PSI

&

1: X – REAL (KIND=nag_wp) Input
2: Y – REAL (KIND=nag_wp) Input

On entry: the x and y coordinates of the point at which the coefficients of the partial
differential equation are to be evaluated.

3: ALPHA – REAL (KIND=nag_wp) Output
4: BETA – REAL (KIND=nag_wp) Output
5: GAMMA – REAL (KIND=nag_wp) Output
6: DELTA – REAL (KIND=nag_wp) Output
7: EPSLON – REAL (KIND=nag_wp) Output
8: PHI – REAL (KIND=nag_wp) Output
9: PSI – REAL (KIND=nag_wp) Output

On exit: ALPHA, BETA, GAMMA, DELTA, EPSLON, PHI and PSI must be set to the
values of � x; yð Þ, � x; yð Þ, � x; yð Þ, � x; yð Þ, � x; yð Þ, � x; yð Þ and  x; yð Þ respectively at the
point specified by X and Y.
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PDEF must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03EEF is called. Parameters denoted as Input must not be changed by
this procedure.

6: BNDY – SUBROUTINE, supplied by the user. External Procedure

BNDY must evaluate the functions a x; yð Þ, b x; yð Þ, and c x; yð Þ involved in the boundary conditions.

The specification of BNDY is:

SUBROUTINE BNDY (X, Y, A, B, C, IBND)

INTEGER IBND

REAL (KIND=nag_wp) X, Y, A, B, C

1: X – REAL (KIND=nag_wp) Input
2: Y – REAL (KIND=nag_wp) Input

On entry: the x and y coordinates of the point at which the boundary conditions are to be
evaluated.

3: A – REAL (KIND=nag_wp) Output
4: B – REAL (KIND=nag_wp) Output
5: C – REAL (KIND=nag_wp) Output

On exit: A, B and C must be set to the values of the functions appearing in the boundary
conditions.

6: IBND – INTEGER Input

On entry: specifies on which boundary the point (X,Y) lies. IBND ¼ 0, 1, 2 or 3
according as the point lies on the bottom, right, top or left boundary.

BNDY must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D03EEF is called. Parameters denoted as Input must not be changed by
this procedure.

7: NGX – INTEGER Input
8: NGY – INTEGER Input

On entry: the number of interior grid points in the x- and y-directions respectively, nx and ny. If
the seven-diagonal equations are to be solved by D03EDF, then NGX� 1 and NGY� 1 should
preferably be divisible by as high a power of 2 as possible.

Constraints:

NGX � 3;
NGY � 3.

9: LDA – INTEGER Input

On entry: the first dimension of the array A and the dimension of the array RHS as declared in the
(sub)program from which D03EEF is called.

Constraint: if only the seven-diagonal equations are required, then LDA � NGX� NGY. If a call
to this routine is to be followed by a call to D03EDF to solve the seven-diagonal linear equations,
LDA � 4� NGXþ 1ð Þ � NGYþ 1ð Þð Þ=3.

Note: this routine only checks the former condition. D03EDF, if called, will check the latter
condition.
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10: AðLDA,7Þ – REAL (KIND=nag_wp) array Output

On exit: Aði; jÞ, for i ¼ 1; 2; . . . ;NGX� NGY and j ¼ 1; 2; . . . ; 7, contains the seven-diagonal
linear equations produced by the discretization described above. If LDA > NGX� NGY, the
remaining elements are not referenced by the routine, but if
LDA � 4� NGXþ 1ð Þ � NGYþ 1ð Þð Þ=3 then the array A can be passed directly to D03EDF,
where these elements are used as workspace.

11: RHSðLDAÞ – REAL (KIND=nag_wp) array Output

On exit: the first NGX� NGY elements contain the right-hand sides of the seven-diagonal linear
equations produced by the discretization described above. If LDA > NGX� NGY, the remaining
elements are not referenced by the routine, but if LDA � 4� NGYþ 1ð Þ � NGYþ 1ð Þð Þ=3 then
the array RHS can be passed directly to D03EDF, where these elements are used as workspace.

12: SCHEME – CHARACTER(1) Input

On entry: the type of approximation to be used for the first derivatives which occur in the partial
differential equation.

SCHEME ¼ C
Central differences are used.

SCHEME ¼ U
Upwind differences are used.

Constraint: SCHEME ¼ C or U .

Note: generally speaking, if at least one of the coefficients multiplying the first derivatives (DELTA
or EPSLON as returned by PDEF) are large compared with the coefficients multiplying the second
derivatives, then upwind differences may be more appropriate. Upwind differences are less accurate
than central differences, but may result in more rapid convergence for strongly convective equations.
The easiest test is to try both schemes

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Note: D03EEF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, XMIN � XMAX,
or YMIN � YMAX,
or NGX < 3,
or NGY < 3,
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or LDA < NGX� NGY,
or SCHEME is not one of C or U .

IFAIL ¼ 2

At some point on the boundary there is a derivative in the boundary conditions (B 6¼ 0 on return

from BNDY) and there is a nonzero coefficient of the mixed derivative @2U
@x@y

(BETA 6¼ 0 on return

from PDEF).

IFAIL ¼ 3

A null boundary has been specified, i.e., at some point both A and B are zero on return from a call
to BNDY.

IFAIL ¼ 4

The equation is not elliptic, i.e., 4� ALPHA� GAMMA < BETA2 after a call to PDEF. The
discretization has been completed, but the convergence of D03EDF cannot be guaranteed.

IFAIL ¼ 5

The boundary conditions are purely Neumann (only the derivative is specified) and there is, in
general, no unique solution.

IFAIL ¼ 6

The equations were not diagonally dominant. (See Section 3.)

7 Accuracy

Not applicable.

8 Further Comments

If this routine is used as a preprocessor to the multigrid routine D03EDF it should be noted that the rate of
convergence of that routine is strongly dependent upon the number of levels in the multigrid scheme, and
thus the choice of NGX and NGY is very important.

9 Example

The program solves the elliptic partial differential equation

@2U

@x2 þ
@2U

@y2 þ 50 @U
@x
þ @U
@y

� �
¼ f x; yð Þ

on the unit square 0 � x, y � 1, with boundary conditions

@U
@n

given on x ¼ 0 and y ¼ 0,

U given on x ¼ 1 and y ¼ 1.

The function f x; yð Þ and the exact form of the boundary conditions are derived from the exact solution
U x; yð Þ ¼ sinx sin y.

The equation is first solved using central differences. Since the coefficients of the first derivatives are
large, the linear equations are not diagonally dominated, and convergence is slow. The equation is solved
a second time with upwind differences, showing that convergence is more rapid, but the solution is less
accurate.
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9.1 Program Text

! D03EEF Example Program Text
! Mark 24 Release. NAG Copyright 2012.

Module d03eefe_mod

! D03EEF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: nin = 5, nout = 6

Contains
Subroutine pdef(x,y,alpha,beta,gamma,delta,epslon,phi,psi)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: alpha, beta, delta, epslon, &

gamma, phi, psi
Real (Kind=nag_wp), Intent (In) :: x, y

! .. Intrinsic Procedures ..
Intrinsic :: cos, sin

! .. Executable Statements ..
alpha = one
beta = zero
gamma = one
delta = 50.0_nag_wp
epslon = 50.0_nag_wp
phi = zero

psi = sin(x)*((-alpha-gamma+phi)*sin(y)+epslon*cos(y)) + &
cos(x)*(delta*sin(y)+beta*cos(y))

Return
End Subroutine pdef
Subroutine bndy(x,y,a,b,c,ibnd)

! .. Parameters ..
Integer, Parameter :: bottom = 0, left = 3, &

right = 1, top = 2
! .. Scalar Arguments ..

Real (Kind=nag_wp), Intent (Out) :: a, b, c
Real (Kind=nag_wp), Intent (In) :: x, y
Integer, Intent (In) :: ibnd

! .. Intrinsic Procedures ..
Intrinsic :: sin

! .. Executable Statements ..
If (ibnd==top .Or. ibnd==right) Then

! Solution prescribed

a = one
b = zero
c = sin(x)*sin(y)

Else If (ibnd==bottom) Then

! Derivative prescribed

a = zero
b = one
c = -sin(x)

Else If (ibnd==left) Then

! Derivative prescribed

a = zero
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b = one
c = -sin(y)

End If

Return
End Subroutine bndy
Function fexact(x,y)

! .. Function Return Value ..
Real (Kind=nag_wp) :: fexact

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x, y

! .. Intrinsic Procedures ..
Intrinsic :: sin

! .. Executable Statements ..
fexact = sin(x)*sin(y)
Return

End Function fexact
End Module d03eefe_mod

Program d03eefe

! D03EEF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d03edf, d03eef, nag_wp
Use d03eefe_mod, Only: bndy, fexact, nin, nout, pdef, zero

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: acc, hx, hy, rmserr, xmax, xmin, &

xx, ymax, ymin, yy
Integer :: i, icase, ifail, iout, ix, j, &

lda, levels, maxit, ngx, ngxy, &
ngy, numit

Character (7) :: scheme
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), rhs(:), u(:), ub(:), &
us(:), x(:), y(:)

! .. Intrinsic Procedures ..
Intrinsic :: real, sqrt

! .. Executable Statements ..
Write (nout,*) ’D03EEF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) levels
ngx = 2**levels + 1
ngy = ngx
lda = 4*(ngx+1)*(ngy+1)/3
ngxy = ngx*ngy
Allocate (a(lda,7),rhs(lda),u(lda),ub(ngxy),us(lda),x(ngxy),y(ngxy))
Read (nin,*) xmin, xmax
Read (nin,*) ymin, ymax
hx = (xmax-xmin)/real(ngx-1,kind=nag_wp)
Do i = 1, ngx

xx = xmin + real(i-1,kind=nag_wp)*hx
x(i:ngxy:ngx) = xx

End Do
hy = (ymax-ymin)/real(ngy-1,kind=nag_wp)
Do j = 1, ngy

yy = ymin + real(j-1,kind=nag_wp)*hy
y((j-1)*ngx+1:j*ngx) = yy

End Do
! ** set iout > 2 to obtain intermediate output from D03EDF **

iout = 0
Read (nin,*) acc
Read (nin,*) maxit
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cases: Do icase = 1, 2

Select Case (icase)
Case (1)

! Central differences
scheme = ’Central’

Case (2)
! Upwind differences

scheme = ’Upwind’
End Select

! Discretize the equations
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = -1
Call d03eef(xmin,xmax,ymin,ymax,pdef,bndy,ngx,ngy,lda,a,rhs,scheme, &

ifail)

If (ifail<0) Then
Write (nout,99995) ifail
Exit cases

End If

! Set the initial guess to zero
ub(1:ngxy) = zero

! Solve the equations
ifail = 0
Call d03edf(ngx,ngy,lda,a,rhs,ub,maxit,acc,us,u,iout,numit,ifail)

! Print out the solution
Write (nout,*)
Write (nout,*) ’Exact solution above computed solution’
Write (nout,*)
Write (nout,99998) ’ I/J’, (i,i=1,ngx)
rmserr = zero
Do j = ngy, 1, -1

ix = (j-1)*ngx
Write (nout,*)
Write (nout,99999) j, (fexact(x(ix+i),y(ix+i)),i=1,ngx)
Write (nout,99999) j, u(ix+1:ix+ngx)
Do i = 1, ngx

rmserr = rmserr + (fexact(x(ix+i),y(ix+i))-u(ix+i))**2
End Do

End Do
rmserr = sqrt(rmserr/real(ngxy,kind=nag_wp))
Write (nout,*)
Write (nout,99997) ’Number of Iterations = ’, numit
Write (nout,99996) ’RMS Error = ’, rmserr

End Do cases

99999 Format (1X,I3,2X,10F7.3:/(6X,10F7.3))
99998 Format (1X,A,10I7:/(6X,10I7))
99997 Format (1X,A,I3)
99996 Format (1X,A,1P,E10.2)
99995 Format (1X,’ ** D03EEF returned with IFAIL = ’,I5)

End Program d03eefe

9.2 Program Data

D03EEF Example Program Data
3 : levels
0.0 1.0 : xmin, xmax
0.0 1.0 : ymin, ymax
1.0E-6 : acc
50 : maxit
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9.3 Program Results

D03EEF Example Program Results

** The linear equations were not diagonally dominant.
** ABNORMAL EXIT from NAG Library routine D03EEF: IFAIL = 6
** NAG soft failure - control returned

Exact solution above computed solution

I/J 1 2 3 4 5 6 7 8 9

9 0.000 0.105 0.208 0.308 0.403 0.492 0.574 0.646 0.708
9 -0.000 0.105 0.208 0.308 0.403 0.492 0.574 0.646 0.708

8 0.000 0.096 0.190 0.281 0.368 0.449 0.523 0.589 0.646
8 -0.000 0.095 0.190 0.281 0.368 0.449 0.523 0.589 0.646

7 0.000 0.085 0.169 0.250 0.327 0.399 0.465 0.523 0.574
7 -0.000 0.084 0.168 0.249 0.326 0.398 0.464 0.523 0.574

6 0.000 0.073 0.145 0.214 0.281 0.342 0.399 0.449 0.492
6 -0.001 0.072 0.144 0.213 0.280 0.342 0.398 0.449 0.492

5 0.000 0.060 0.119 0.176 0.230 0.281 0.327 0.368 0.403
5 -0.001 0.059 0.118 0.174 0.229 0.280 0.326 0.368 0.403

4 0.000 0.046 0.091 0.134 0.176 0.214 0.250 0.281 0.308
4 -0.001 0.044 0.089 0.133 0.174 0.213 0.249 0.281 0.308

3 0.000 0.031 0.061 0.091 0.119 0.145 0.169 0.190 0.208
3 -0.001 0.029 0.060 0.089 0.118 0.144 0.168 0.190 0.208

2 0.000 0.016 0.031 0.046 0.060 0.073 0.085 0.096 0.105
2 -0.001 0.014 0.029 0.044 0.059 0.072 0.084 0.095 0.105

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.000 -0.000 -0.000

Number of Iterations = 10
RMS Error = 7.92E-04

Exact solution above computed solution

I/J 1 2 3 4 5 6 7 8 9

9 0.000 0.105 0.208 0.308 0.403 0.492 0.574 0.646 0.708
9 -0.000 0.105 0.208 0.308 0.403 0.492 0.574 0.646 0.708

8 0.000 0.096 0.190 0.281 0.368 0.449 0.523 0.589 0.646
8 -0.002 0.093 0.186 0.276 0.362 0.443 0.517 0.585 0.646

7 0.000 0.085 0.169 0.250 0.327 0.399 0.465 0.523 0.574
7 -0.005 0.078 0.160 0.239 0.316 0.388 0.455 0.517 0.574

6 0.000 0.073 0.145 0.214 0.281 0.342 0.399 0.449 0.492
6 -0.008 0.063 0.132 0.200 0.266 0.329 0.388 0.443 0.492

5 0.000 0.060 0.119 0.176 0.230 0.281 0.327 0.368 0.403
5 -0.011 0.047 0.103 0.159 0.214 0.266 0.316 0.362 0.403

4 0.000 0.046 0.091 0.134 0.176 0.214 0.250 0.281 0.308
4 -0.013 0.030 0.074 0.117 0.159 0.200 0.239 0.276 0.308

3 0.000 0.031 0.061 0.091 0.119 0.145 0.169 0.190 0.208
3 -0.015 0.014 0.044 0.074 0.103 0.132 0.160 0.186 0.208

2 0.000 0.016 0.031 0.046 0.060 0.073 0.085 0.096 0.105
2 -0.016 -0.001 0.014 0.030 0.047 0.063 0.078 0.093 0.105
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1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 -0.016 -0.016 -0.015 -0.013 -0.011 -0.008 -0.005 -0.002 -0.000

Number of Iterations = 4
RMS Error = 1.05E-02

Example Program
Solution of Elliptic PDE using Central Differences
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