F07HVF (ZPBRFS) (PDF version)
F07 Chapter Contents
F07 Chapter Introduction
NAG Library Manual

NAG Library Routine Document

F07HVF (ZPBRFS)

Note:  before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

+ Contents

    1  Purpose
    7  Accuracy

1  Purpose

F07HVF (ZPBRFS) returns error bounds for the solution of a complex Hermitian positive definite band system of linear equations with multiple right-hand sides, AX=B. It improves the solution by iterative refinement, in order to reduce the backward error as much as possible.

2  Specification

SUBROUTINE F07HVF ( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
INTEGER  N, KD, NRHS, LDAB, LDAFB, LDB, LDX, INFO
REAL (KIND=nag_wp)  FERR(NRHS), BERR(NRHS), RWORK(N)
COMPLEX (KIND=nag_wp)  AB(LDAB,*), AFB(LDAFB,*), B(LDB,*), X(LDX,*), WORK(2*N)
CHARACTER(1)  UPLO
The routine may be called by its LAPACK name zpbrfs.

3  Description

F07HVF (ZPBRFS) returns the backward errors and estimated bounds on the forward errors for the solution of a complex Hermitian positive definite band system of linear equations with multiple right-hand sides AX=B. The routine handles each right-hand side vector (stored as a column of the matrix B) independently, so we describe the function of F07HVF (ZPBRFS) in terms of a single right-hand side b and solution x.
Given a computed solution x, the routine computes the component-wise backward error β. This is the size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a perturbed system
A+δAx=b+δb δaijβaij   and   δbiβbi .
Then the routine estimates a bound for the component-wise forward error in the computed solution, defined by:
maxixi-x^i/maxixi
where x^ is the true solution.
For details of the method, see the F07 Chapter Introduction.

4  References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5  Parameters

1:     UPLO – CHARACTER(1)Input
On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be factorized.
UPLO='U'
The upper triangular part of A is stored and A is factorized as UHU, where U is upper triangular.
UPLO='L'
The lower triangular part of A is stored and A is factorized as LLH, where L is lower triangular.
Constraint: UPLO='U' or 'L'.
2:     N – INTEGERInput
On entry: n, the order of the matrix A.
Constraint: N0.
3:     KD – INTEGERInput
On entry: kd, the number of superdiagonals or subdiagonals of the matrix A.
Constraint: KD0.
4:     NRHS – INTEGERInput
On entry: r, the number of right-hand sides.
Constraint: NRHS0.
5:     AB(LDAB,*) – COMPLEX (KIND=nag_wp) arrayInput
Note: the second dimension of the array AB must be at least max1,N.
On entry: the n by n original Hermitian positive definite band matrix A as supplied to F07HRF (ZPBTRF).
6:     LDAB – INTEGERInput
On entry: the first dimension of the array AB as declared in the (sub)program from which F07HVF (ZPBRFS) is called.
Constraint: LDABKD+1.
7:     AFB(LDAFB,*) – COMPLEX (KIND=nag_wp) arrayInput
Note: the second dimension of the array AFB must be at least max1,N.
On entry: the Cholesky factor of A, as returned by F07HRF (ZPBTRF).
8:     LDAFB – INTEGERInput
On entry: the first dimension of the array AFB as declared in the (sub)program from which F07HVF (ZPBRFS) is called.
Constraint: LDAFBKD+1.
9:     B(LDB,*) – COMPLEX (KIND=nag_wp) arrayInput
Note: the second dimension of the array B must be at least max1,NRHS.
On entry: the n by r right-hand side matrix B.
10:   LDB – INTEGERInput
On entry: the first dimension of the array B as declared in the (sub)program from which F07HVF (ZPBRFS) is called.
Constraint: LDBmax1,N.
11:   X(LDX,*) – COMPLEX (KIND=nag_wp) arrayInput/Output
Note: the second dimension of the array X must be at least max1,NRHS.
On entry: the n by r solution matrix X, as returned by F07HSF (ZPBTRS).
On exit: the improved solution matrix X.
12:   LDX – INTEGERInput
On entry: the first dimension of the array X as declared in the (sub)program from which F07HVF (ZPBRFS) is called.
Constraint: LDXmax1,N.
13:   FERR(NRHS) – REAL (KIND=nag_wp) arrayOutput
On exit: FERRj contains an estimated error bound for the jth solution vector, that is, the jth column of X, for j=1,2,,r.
14:   BERR(NRHS) – REAL (KIND=nag_wp) arrayOutput
On exit: BERRj contains the component-wise backward error bound β for the jth solution vector, that is, the jth column of X, for j=1,2,,r.
15:   WORK(2×N) – COMPLEX (KIND=nag_wp) arrayWorkspace
16:   RWORK(N) – REAL (KIND=nag_wp) arrayWorkspace
17:   INFO – INTEGEROutput
On exit: INFO=0 unless the routine detects an error (see Section 6).

6  Error Indicators and Warnings

Errors or warnings detected by the routine:
INFO<0
If INFO=-i, the ith parameter had an illegal value. An explanatory message is output, and execution of the program is terminated.

7  Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but in practice they almost always overestimate the actual error.

8  Further Comments

For each right-hand side, computation of the backward error involves a minimum of 32nk real floating point operations. Each step of iterative refinement involves an additional 48nk real operations. This assumes nk. At most five steps of iterative refinement are performed, but usually only one or two steps are required.
Estimating the forward error involves solving a number of systems of linear equations of the form Ax=b; the number is usually 5 and never more than 11. Each solution involves approximately 16nk real operations.
The real analogue of this routine is F07HHF (DPBRFS).

9  Example

This example solves the system of equations AX=B using iterative refinement and to compute the forward and backward error bounds, where
A= 9.39+0.00i 1.08-1.73i 0.00+0.00i 0.00+0.00i 1.08+1.73i 1.69+0.00i -0.04+0.29i 0.00+0.00i 0.00+0.00i -0.04-0.29i 2.65+0.00i -0.33+2.24i 0.00+0.00i 0.00+0.00i -0.33-2.24i 2.17+0.00i
and
B= -12.42+68.42i 54.30-56.56i -9.93+00.88i 18.32+04.76i -27.30-00.01i -4.40+09.97i 5.31+23.63i 9.43+01.41i .
Here A is Hermitian positive definite, and is treated as a band matrix, which must first be factorized by F07HRF (ZPBTRF).

9.1  Program Text

Program Text (f07hvfe.f90)

9.2  Program Data

Program Data (f07hvfe.d)

9.3  Program Results

Program Results (f07hvfe.r)


F07HVF (ZPBRFS) (PDF version)
F07 Chapter Contents
F07 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2012