NAG Library Routine Document
G13EBF
1 Purpose
G13EBF performs a combined measurement and time update of one iteration of the time-invariant Kalman filter using a square root covariance filter.
2 Specification
SUBROUTINE G13EBF ( |
TRANSF, N, M, L, A, LDS, B, STQ, Q, LDQ, C, LDM, R, S, K, H, U, TOL, IWK, WK, IFAIL) |
INTEGER |
N, M, L, LDS, LDQ, LDM, IWK(M), IFAIL |
REAL (KIND=nag_wp) |
A(LDS,N), B(LDS,L), Q(LDQ,*), C(LDM,N), R(LDM,M), S(LDS,N), K(LDS,M), H(LDM,M), U(LDS,*), TOL, WK((N+M)*(N+M+L)) |
LOGICAL |
STQ |
CHARACTER(1) |
TRANSF |
|
3 Description
The Kalman filter arises from the state space model given by
where
is the state vector of length
at time
,
is the observation vector of length
at time
and
of length
and
of length
are the independent state noise and measurement noise respectively. The matrices
and
are time invariant.
The estimate of
given observations
to
is denoted by
with state covariance matrix
while the estimate of
given observations
to
is denoted by
with covariance matrix
. The update of the estimate,
, from time
to time
is computed in two stages. First, the measurement-update is given by
where
is the Kalman gain matrix. The second stage is the time-update for
, which is given by
where
represents any deterministic control used.
The square root covariance filter algorithm provides a stable method for computing the Kalman gain matrix and the state covariance matrix. The algorithm can be summarised as
where
is an orthogonal transformation triangularizing the left-hand pre-array to produce the right-hand post-array. The triangularization is carried out via Householder transformations exploiting the zero pattern of the pre-array. The relationship between the Kalman gain matrix
and
is given by
In order to exploit the invariant parts of the model to simplify the computation of
the results for the transformed state space
are computed where
is the transformation that reduces the matrix pair
to lower observer Hessenberg form. That is, the matrix
is computed such that the compound matrix
is a lower trapezoidal matrix. Further the matrix
is transformed to
. These transformations need only be computed once at the start of a series, and G13EBF will, optionally, compute them. G13EBF returns transformed matrices
,
,
and
, the Cholesky factor of the updated transformed state covariance matrix
(where
) and the matrix
, valid for both transformed and original models, which is used in the computation of the likelihood for the model. Note that the covariance matrices
and
can be time-varying.
4 References
Vanbegin M, van Dooren P and Verhaegen M H G (1989) Algorithm 675: FORTRAN subroutines for computing the square root covariance filter and square root information filter in dense or Hessenberg forms ACM Trans. Math. Software 15 243–256
Verhaegen M H G and van Dooren P (1986) Numerical aspects of different Kalman filter implementations IEEE Trans. Auto. Contr. AC-31 907–917
5 Parameters
- 1: TRANSF – CHARACTER(1)Input
On entry: indicates whether to transform the input matrix pair
to lower observer Hessenberg form. The transformation will only be required on the first call to G13EBF.
- The matrices in arrays A and C are transformed to lower observer Hessenberg form and the matrices in B and S are transformed as described in Section 3.
- The matrices in arrays A, C and B should be as returned from a previous call to G13EBF with .
Constraint:
or .
- 2: N – INTEGERInput
On entry: , the size of the state vector.
Constraint:
.
- 3: M – INTEGERInput
On entry: , the size of the observation vector.
Constraint:
.
- 4: L – INTEGERInput
On entry: , the dimension of the state noise.
Constraint:
.
- 5: A(LDS,N) – REAL (KIND=nag_wp) arrayInput/Output
On entry: if
, the state transition matrix,
.
If , the transformed matrix as returned by a previous call to G13EBF with .
On exit: if
, the transformed matrix,
, otherwise
A is unchanged.
- 6: LDS – INTEGERInput
On entry: the first dimension of the arrays
A,
B,
S,
K and
U as declared in the (sub)program from which G13EBF is called.
Constraint:
.
- 7: B(LDS,L) – REAL (KIND=nag_wp) arrayInput/Output
On entry: if
, the noise coefficient matrix
.
If , the transformed matrix as returned by a previous call to G13EBF with .
On exit: if
, the transformed matrix,
, otherwise
B is unchanged.
- 8: STQ – LOGICALInput
On entry: if
, the state noise covariance matrix
is assumed to be the identity matrix. Otherwise the lower triangular Cholesky factor,
, must be provided in
Q.
- 9: Q(LDQ,) – REAL (KIND=nag_wp) arrayInput
-
Note: the second dimension of the array
Q
must be at least
if
and at least
if
.
On entry: if
,
Q must contain the lower triangular Cholesky factor of the state noise covariance matrix,
. Otherwise
Q is not referenced.
- 10: LDQ – INTEGERInput
On entry: the first dimension of the array
Q as declared in the (sub)program from which G13EBF is called.
Constraints:
- if , ;
- otherwise .
- 11: C(LDM,N) – REAL (KIND=nag_wp) arrayInput/Output
On entry: if
, the measurement coefficient matrix,
.
If , the transformed matrix as returned by a previous call to G13EBF with .
On exit: if
, the transformed matrix,
, otherwise
C is unchanged.
- 12: LDM – INTEGERInput
On entry: the first dimension of the arrays
C,
R and
H as declared in the (sub)program from which G13EBF is called.
Constraint:
.
- 13: R(LDM,M) – REAL (KIND=nag_wp) arrayInput
On entry: the lower triangular Cholesky factor of the measurement noise covariance matrix .
- 14: S(LDS,N) – REAL (KIND=nag_wp) arrayInput/Output
On entry: if
the lower triangular Cholesky factor of the state covariance matrix,
.
If the lower triangular Cholesky factor of the covariance matrix of the transformed state vector as returned from a previous call to G13EBF with .
On exit: the lower triangular Cholesky factor of the transformed state covariance matrix, .
- 15: K(LDS,M) – REAL (KIND=nag_wp) arrayOutput
On exit: the Kalman gain matrix for the transformed state vector premultiplied by the state transformed transition matrix, .
- 16: H(LDM,M) – REAL (KIND=nag_wp) arrayOutput
On exit: the lower triangular matrix .
- 17: U(LDS,) – REAL (KIND=nag_wp) arrayOutput
-
Note: the second dimension of the array
U
must be at least
if
, and at least
otherwise.
On exit: if
the
by
transformation matrix
, otherwise
U is not referenced.
- 18: TOL – REAL (KIND=nag_wp)Input
On entry: the tolerance used to test for the singularity of
. If
, then
is used instead. The inverse of the condition number of
is estimated by a call to
F07TGF (DTRCON). If this estimate is less than
TOL then
is assumed to be singular.
Suggested value:
.
Constraint:
.
- 19: IWK(M) – INTEGER arrayWorkspace
- 20: WK() – REAL (KIND=nag_wp) arrayWorkspace
- 21: IFAIL – INTEGERInput/Output
-
On entry:
IFAIL must be set to
,
. If you are unfamiliar with this parameter you should refer to
Section 3.3 in the Essential Introduction for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value
is recommended. If the output of error messages is undesirable, then the value
is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is
.
When the value is used it is essential to test the value of IFAIL on exit.
On exit:
unless the routine detects an error or a warning has been flagged (see
Section 6).
6 Error Indicators and Warnings
If on entry
or
, explanatory error messages are output on the current error message unit (as defined by
X04AAF).
Errors or warnings detected by the routine:
On entry, | or , |
or | , |
or | , |
or | , |
or | , |
or | , |
or | and , |
or | and , |
or | . |
The matrix is singular.
7 Accuracy
The use of the square root algorithm improves the stability of the computations as compared with the direct coding of the Kalman filter. The accuracy will depend on the model.
For models with time-varying
and
,
G13EAF can be used.
The initial estimate of the transformed state vector can be computed from the estimate of the original state vector
, say, by premultiplying it by
as returned by G13EBF with
; that is,
. The estimate of the transformed state vector
can be computed from the previous value
by
where
are the independent one-step prediction residuals for both the transformed and original model. The estimate of the original state vector can be computed from the transformed state vector as
. The required matrix-vector multiplications can be performed by
F06PAF (DGEMV).
If
and
are independent multivariate Normal variates then the log-likelihood for observations
is given by
where
is a constant.
The Cholesky factors of the covariance matrices can be computed using
F07FDF (DPOTRF).
Note that the model
can be specified either with
B set to the identity matrix and
and the matrix
input in
Q or with
and
B set to
.
The algorithm requires
operations and is backward stable (see
Verhaegen and van Dooren (1986)). The transformation to lower observer Hessenberg form requires
operations.
9 Example
This example first inputs the number of updates to be computed and the problem sizes. The initial state vector and the Cholesky factor of the state covariance matrix are input followed by the model matrices
and optionally
(the Cholesky factors of the covariance matrices being input). At the first update the matrices are transformed using the
option and the initial value of the state vector is transformed. At each update the observed values are input and the residuals are computed and printed and the estimate of the transformed state vector,
, and the deviance are updated. The deviance is
ignoring the constant. After the final update the estimate of the state vector is computed from the transformed state vector and the state covariance matrix is computed from
S and these are printed along with the value of the deviance.
The data is for a two-dimensional time series to which a VARMA
has been fitted. For the specification of a VARMA model as a state space model see the
G13 Chapter Introduction. The means of the two series are included as additional states that do not change over time. The initial value of
,
, is the solution to
9.1 Program Text
Program Text (g13ebfe.f90)
9.2 Program Data
Program Data (g13ebfe.d)
9.3 Program Results
Program Results (g13ebfe.r)