F11XSF (PDF version)
F11 Chapter Contents
F11 Chapter Introduction
NAG Library Manual

NAG Library Routine Document

F11XSF

Note:  before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

+ Contents

    1  Purpose
    7  Accuracy

1  Purpose

F11XSF computes a matrix-vector product involving a complex sparse Hermitian matrix stored in symmetric coordinate storage format.

2  Specification

SUBROUTINE F11XSF ( N, NNZ, A, IROW, ICOL, CHECK, X, Y, IFAIL)
INTEGER  N, NNZ, IROW(NNZ), ICOL(NNZ), IFAIL
COMPLEX (KIND=nag_wp)  A(NNZ), X(N), Y(N)
CHARACTER(1)  CHECK

3  Description

F11XSF computes the matrix-vector product
y=Ax
where A is an n by n complex Hermitian sparse matrix, of arbitrary sparsity pattern, stored in symmetric coordinate storage (SCS) format (see Section 2.1.2 in the F11 Chapter Introduction). The array A stores all the nonzero elements in the lower triangular part of A, while arrays IROW and ICOL store the corresponding row and column indices respectively.

4  References

None.

5  Parameters

1:     N – INTEGERInput
On entry: n, the order of the matrix A.
Constraint: N1.
2:     NNZ – INTEGERInput
On entry: the number of nonzero elements in the lower triangular part of the matrix A.
Constraint: 1NNZN×N+1/2.
3:     A(NNZ) – COMPLEX (KIND=nag_wp) arrayInput
On entry: the nonzero elements in the lower triangular part of the matrix A, ordered by increasing row index, and by increasing column index within each row. Multiple entries for the same row and column indices are not permitted. The routine F11ZPF may be used to order the elements in this way.
4:     IROW(NNZ) – INTEGER arrayInput
5:     ICOL(NNZ) – INTEGER arrayInput
On entry: the row and column indices of the nonzero elements supplied in array A.
Constraints:
IROW and ICOL must satisfy the following constraints (which may be imposed by a call to F11ZPF):
  • 1IROWiN and 1ICOLiIROWi, for i=1,2,,NNZ;
  • IROWi-1<IROWi or IROWi-1=IROWi and ICOLi-1<ICOLi, for i=2,3,,NNZ.
6:     CHECK – CHARACTER(1)Input
On entry: specifies whether or not the SCS representation of the matrix A, values of N, NNZ, IROW and ICOL should be checked.
CHECK='C'
Checks are carried out on the values of N, NNZ, IROW and ICOL.
CHECK='N'
None of these checks are carried out.
Constraint: CHECK='C' or 'N'.
7:     X(N) – COMPLEX (KIND=nag_wp) arrayInput
On entry: the vector x.
8:     Y(N) – COMPLEX (KIND=nag_wp) arrayOutput
On exit: the vector y.
9:     IFAIL – INTEGERInput/Output
On entry: IFAIL must be set to 0, -1​ or ​1. If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1​ or ​1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0. When the value -1​ or ​1 is used it is essential to test the value of IFAIL on exit.
On exit: IFAIL=0 unless the routine detects an error or a warning has been flagged (see Section 6).

6  Error Indicators and Warnings

If on entry IFAIL=0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
IFAIL=1
On entry,CHECK'C' or 'N'.
IFAIL=2
On entry,N<1,
orNNZ<1,
orNNZ>N×N+1/2.
IFAIL=3
On entry, the arrays IROW and ICOL fail to satisfy the following constraints:
  • 1IROWiN and 1ICOLiIROWi, for i=1,2,,NNZ;
  • IROWi-1<IROWi or IROWi-1=IROWi and ICOLi-1<ICOLi, for i=2,3,,NNZ.
Therefore a nonzero element has been supplied which does not lie in the lower triangular part of A, is out of order, or has duplicate row and column indices. Call F11ZPF to reorder and sum or remove duplicates.

7  Accuracy

The computed vector y satisfies the error bound
y-AxcnεAx,
where cn is a modest linear function of n, and ε is the machine precision.

8  Further Comments

8.1  Timing

The time taken for a call to F11XSF is proportional to NNZ.

9  Example

This example reads in a complex sparse Hermitian positive definite matrix A and a vector x. It then calls F11XSF to compute the matrix-vector product y=Ax.

9.1  Program Text

Program Text (f11xsfe.f90)

9.2  Program Data

Program Data (f11xsfe.d)

9.3  Program Results

Program Results (f11xsfe.r)


F11XSF (PDF version)
F11 Chapter Contents
F11 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2012