F06ZTF (ZSYMM) (PDF version)
F06 Chapter Contents
F06 Chapter Introduction
NAG Library Manual

NAG Library Routine Document

F06ZTF (ZSYMM)

Note:  before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

+ Contents

    1  Purpose
    7  Accuracy
    9  Example

1  Purpose

F06ZTF (ZSYMM) performs one of the matrix-matrix operations
CαAB + βC   or   CαBA + βC ,
where A is a complex symmetric matrix, B and C are m by n complex matrices, and α and β are complex scalars.

2  Specification

SUBROUTINE F06ZTF ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
INTEGER  M, N, LDA, LDB, LDC
COMPLEX (KIND=nag_wp)  ALPHA, A(LDA,*), B(LDB,*), BETA, C(LDC,*)
CHARACTER(1)  SIDE, UPLO
The routine may be called by its BLAS name zsymm.

3  Description

None.

4  References

None.

5  Parameters

1:     SIDE – CHARACTER(1)Input
On entry: specifies whether B is operated on from the left or the right.
SIDE='L'
B is pre-multiplied from the left.
SIDE='R'
B is post-multiplied from the right.
Constraint: SIDE='L' or 'R'.
2:     UPLO – CHARACTER(1)Input
On entry: specifies whether the upper or lower triangular part of A is stored.
UPLO='U'
The upper triangular part of A is stored.
UPLO='L'
The lower triangular part of A is stored.
Constraint: UPLO='U' or 'L'.
3:     M – INTEGERInput
On entry: m, the number of rows of the matrices B and C; the order of A if SIDE='L'.
Constraint: M0.
4:     N – INTEGERInput
On entry: n, the number of columns of the matrices B and C; the order of A if SIDE='R'.
Constraint: N0.
5:     ALPHA – COMPLEX (KIND=nag_wp)Input
On entry: the scalar α.
6:     A(LDA,*) – COMPLEX (KIND=nag_wp) arrayInput
Note: the second dimension of the array A must be at least max1,M if SIDE='L' and at least max1,N if SIDE='R'.
On entry: the symmetric matrix A; A is m by m if SIDE='L', or n by n if SIDE='R'.
  • If UPLO='U', the upper triangular part of A must be stored and the elements of the array below the diagonal are not referenced.
  • If UPLO='L', the lower triangular part of A must be stored and the elements of the array above the diagonal are not referenced.
7:     LDA – INTEGERInput
On entry: the first dimension of the array A as declared in the (sub)program from which F06ZTF (ZSYMM) is called.
Constraints:
  • if SIDE='L', LDA max1,M ;
  • if SIDE='R', LDA max1,N .
8:     B(LDB,*) – COMPLEX (KIND=nag_wp) arrayInput
Note: the second dimension of the array B must be at least max1,N.
On entry: the m by n matrix B.
9:     LDB – INTEGERInput
On entry: the first dimension of the array B as declared in the (sub)program from which F06ZTF (ZSYMM) is called.
Constraint: LDB max1,M .
10:   BETA – COMPLEX (KIND=nag_wp)Input
On entry: the scalar β.
11:   C(LDC,*) – COMPLEX (KIND=nag_wp) arrayInput/Output
Note: the second dimension of the array C must be at least max1,N.
On entry: the m by n matrix C.
If BETA=0, C need not be set.
On exit: the updated matrix C.
12:   LDC – INTEGERInput
On entry: the first dimension of the array C as declared in the (sub)program from which F06ZTF (ZSYMM) is called.
Constraint: LDC max1,M .

6  Error Indicators and Warnings

None.

7  Accuracy

Not applicable.

8  Further Comments

None.

9  Example

None.

F06ZTF (ZSYMM) (PDF version)
F06 Chapter Contents
F06 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2012